
 Software Projects
Evolutionary vs. Big-bang Delivery

Felix Redmill

Felix Redmill
For 25 years Felix has been a consultant in project management and in risk management

for safety-critical systems. Before that, he spent more than 20 years in industry, as

engineer and manager. He started as a programmer and progressed to systems analyst,

development manager, project manager, and system strategist. Evolutionary vs. Big-

bang Delivery is based on his pioneering experience as a Development Manager. He

has degrees in Electrical Engineering and Computation from London University and

UMIST, is a Chartered Engineer and a Fellow of both the Institution of Engineering

and Technology and the British Computer Society.

He has presented and published widely on aspects of safety and risk management, and, on behalf of EWICS TC7

(European Workshop on Industrial Computer Systems Reliability, Safety and Security), he edited two volumes of

Guidelines, which influenced the development of the core safety standard, IEC61508.

A founder member of the Safety Critical Systems Club (SCSC) in 1991 he was event co-ordinator until 2007 and

continues, after 24 years, to edit the Club’s Newsletter.

He provides short training courses in Project Management, Risk-based Testing, and Requirements Engineering.

Born in St Kitts, Felix lives in North London, where his hobbies of walking, reading and writing, merge into his

professional life.

He can be contacted at Felix@safetycritical.info

Reviews
Read this book. Felix Redmill has long experience in our industry, leading teams to build systems with challenging

customer requirements, and monitoring projects run by other people. He has seen successes and failures, and learned

from both. His accumulated experience is in this book and it will give you insight and wisdom that will reduce the risks

on your next project.

Experienced readers will not agree with every opinion in this book; but they will agree with enough that they will

respect the experience and the intellect that have formed the opinions with which they disagree, and they will benefit

from having their ideas challenged.

Whatever stage you have reached in your career, when you have read this you will be a better software engineer.
Martyn Thomas

Livery Company Professor of Information Technology at Gresham College.
Visiting Professor of Software Engineering, Oxford University,

Non Executive Director, Health & Safety Executive

Amid the hoopla over ‘Agile’, the re-publication of this book feels particularly timely and welcome. It offers solid and

hard-won advice from evolutionary projects that is still as relevant today as it was two decades ago. In particular, the

material on project planning, preparation and the importance of business strategy in managing change should be

required reading for anyone considering a more ‘Agile’ development approach. Miss this book at your peril.
Dr Roderick Chapman,

 Director, Protean Code Limited and
 Honorary Visiting Professor, Department of Computer Science, University of York

Software Projects
Evolutionary vs. Big-bang Delivery

Felix Redmill

JAGraphics: Publishing for Phaedrus Systems
96 Brambling, Tamworth, B77 5PG

JAGraphics Publishing for Phaedrus Systems

96 Brambling, Tamworth, B77 5PG

First Published: J Wiley, 1997

This Edition Published: JA Graphics, 2015

© Felix Redmill, 1997, 2015

The moral right of Felix Redmill to be identified as author of this work has been asserted in accordance with
the Copyright, Designs and Patents Act, 1988

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval
system, without permission in writing from the publisher.

ISBN (E-book) 978-1-910888-00-1

www.jagraphics.com

To all who worked with
me in NIS

Preface 2 . xii
Editor’s Note . . xii

Preface . xiii
Big-bang and evolutionary delivery . xiii
What’s in the book . xiii
Routes through the book . xiv
Acknowledgements . . xiv

Forward . xv

Part One : The Path To Evolutionary Delivery 1

1 Problems and Panaceas . . 2
1.1	 A Brief History Of Software Development . 2
1.2	 Summary And Extracts . 6

2 A Natural Order of Events . . 7
2.1	 The Waterfall Model . 8
2.2	 The V Model . 9
2.3	 The Spiral Model . 10
2.4	 The Matrix Model . . 11
2.5	 The Thing About Models . 13
2.6	 Summary And Extracts . 15

3 Lessons in Software Development . . 17
3.1	 The Customer’s Perspective . . 17
3.2	 The Developers’ Problems . . 18
3.2.1		 Time and Budget Inadequate — An In-house Project 18
3.2.2		 Time and Budget Inadequate — A Contracted-out Project 20
3.2.3		 The Folly of Backward Estimation . . 20
3.2.4		 But Business Objectives May Demand Backward Estimation! 22

Contents

3.2.5		 No Estimation — and the Desire for Estimating Tools 22
3.2.6		 So Where’s the Strategy ? . . 23
3.2.7		 But What is it That You Want, Exactly ? . . 24
3.2.8		 Who Wants the System, Anyway ? . . 26
3.2.9		 Control Change or Fall Prey to It . 27
3.3	 Summary And Extracts . 27

4 At the Mercy of the Project . 29
4.1	 The Wrong Project Manager . . 30
4.2	 Project Infrastructure . 30
4.3	 Planning . 31
4.4 Project And Product . 32
4.5	 Integrity . 33
4.6	 Making Things Happen . 33
4.7	 The Culture Of Reporting Problems . . 34
4.8	 Summary And Extracts . 35

5 The Waterfall Model is Dead, Long Live the Waterfall Model 37
5.1	 The Waterfall Model Is Dead . . 37
5.2	 A Scapegoat, Not The Cause . . 38
5.3	 The Trouble With ‘Big Bang’ . 39
5.4	 The Certainty Of Change . 39
5.5	 Comparing Like With Like . . 40
5.6	 Long Live The Waterfall Model . . 41
5.7	 Summary And Extracts . 41

6 Enter Evolutionary Delivery . 42
6.1	 We Go For It — Or Get Pushed . . 42
6.2	 What Is Evolutionary Delivery? . 43
6.2.1		 Evolution . 43
6.2.2		 Delivery . 43
6.3	 Advantages Of Evolutionary Delivery . 44
6.3.1		 Early Feedback . . 44
6.3.2		 An Early Working System . . 44
6.3.3		 Customer Confidence . 44
6.3.4		 Development Team Morale . . 45
6.4	 A Summary Of The Problems Created By Evolutionary Delivery 45
6.4.1		 Initial Planning . . 45
6.4.2		 Control of Change . . 46
6.4.3		 Planning Deliveries . . 46
6.4.4		 Configuration Management . 46
6.4.5		 Testing . . 47
6.4.6		 Maintenance . . 47

6.4.7		 Philosophy and Culture . . 47
6.5	 Summary And Extracts . 48

Part Two: The Path Through Evolutionary Delivery 50

7 The Importance of Strategy . . 51
7.1	 The Issues . 51
7.2	 Strategic Planning . 52
7.3	 Information Systems Planning . . 53
7.4	 Notes On Strategy And Planning . 54
7.5	 Sensitivity To Change . . 55
7.6	 Strategic Concurrence . 56
7.7	 Summary And Extracts . 57

8 Project Infrastructure . 59
8.1	 The Issues . 59
8.2	 Project Components . 60
8.2.1	 	 Project Management Team . . 61
8.2.2	 	 The Development Team . 61
8.2.3 	 Customers and Users . . 61
8.2.4	 	 The Strategic Representative . 62
8.3	 Project Relationships . . 62
8.3.1		 The Customer Council . 62
8.3.2		 The Project Board . 63
8.3.3		 The Coordination Team . . 65
8.4	 Development Team Structure . 66
8.5	 Communications . 67
8.5.1		 Reporting Within the Project . . 67
8.5.2		 Transfer of Information . . 68
8.5.3		 Communication Across the Project Boundary . 68
8.6	 Document Infrastructure . 68
8.7	 Components Of The Technical Infrastructure . . 69
8.8	 Summary And Extracts . 70

9 Initial Planning . 72
9.1	 The Issues . 72
9.2	 Specification . 73
9.3	 Planning The Project . 74
9.4	 Modelling The Project . . 76
9.5	 Planning The First Delivery . 78
9.5.1		 Project Infrastructure . . 78
9.5.2		 Architectural Design . 78
9.5.3		 Detailed Design . 79
9.5.4		 Which Functions? . 80
9.5.5		 Use of Hardware . 81

9.6	 Planning Later Deliveries . 81
9.6.1		 The Second and Third Deliveries . 81
9.6.2		 The Effect of Validation on the Delivery Period . . 82
9.6.3		 The Planning Process . . 82
9.6.4		 Practical Issues at Delivery . 83
9.7	 Summary And Extracts . 83

10 Software Configuration Management . 85
10.1 Issues . . 85
10.2	The Need For A Development Procedure . 86
10.3	The Configuration Management System . . 87
10.3.1	 Fundamentals . . 87
10.3.2	 Software Progress . 88
10.3.3	 Version Control and Storage . 89
10.4	Making Changes . . 90
10.5	Overheads In Deliveries . . 91
10.6	Managing The Configuration Management System 92
10.7	Concurrent Development . . 92
10.8	Overheads In Effort . . 93
10.9 Summary And Extracts . 93

11 Change Control . 95
11.1	The Issues . 95
11.2	Requests For Change . 96
11.3	A Procedure For Handling Requests For Change . . 97
11.3.1	 Preamble . 97
11.3.2	 Initial Documentation . 97
11.3.3	 Initial Vetting . . 98
11.3.4	 Coordination . . 99
11.3.5	 Strategic Concurrence . 99
11.3.6	 Formal Specification . . 99
11.3.7	 Verification . 100
11.3.8	 Quality Assurance . . 100
11.3.9	 Feasibility Study . . 100
11.3.10	 Decision on Whether to Proceed . 101
11.3.11	 Remarks on Formality . 101
11.4	Documentation Of Requests For Change . 102
11.5	The Users’ View . 102
11.6	Summary And Extracts . . 103

12 Prioritization of Work and Delivery Planning 104
12.1	The Issues . . 104
12.2	Preparing The Prioritization List . 105
12.2.1	 Preamble . 105

12.2.2	 The First Draft of the New Prioritization List . 105
12.2.3	 The Strategic Representative’s Responsibility . . 106
12.2.4	 The Development Manager’s Responsibility . 107
12.2.5	 The Project Manager’s Responsibility . . 108
12.2.6	 The Meeting . 108
12.2.7	 Timing . 108
12.3	Prioritization . . 108
12.4	Delivery Planning . 109
12.4.1	 Delivery Already in Development . 109
12.4.2	 Changes To The Same Software Unit . 110
12.4.3	 Large Jobs . 111
12.4.4	 Dependencies . 111
12.4.5	 Strategic Requirements . 111
12.4.6	 Form of the Delivery Plan . 111
12.5	Summary And Extracts . . 112

13 Testing . . 113
13.1	The Issues . . 113
13.2	Testing And Confidence . 114
13.3	Testing In Evolutionary Delivery . 115
13.3.1	 The T Level . 115
13.3.2	 The I Level . 116
13.3.3	 The S Level . 116
13.3.4	 The U Level . 117
13.3.5	 The L Level . 117
13.4	Achieving Confidence Through Testing . . 118
13.5	Summary And Extracts . . 119

14 Software Maintenance — Definition and Procedures 121
14.1	The Issues . . 121
14.2	Redefining Software Maintenance . 122

14.3	A Problem To Be Resolved . 123
14.4	Advantages . 124
14.4.1	 Need for a Definition . 124
14.4.2	 Quality Measurement . 124
14.4.3	 Budgeting and Accounting . 124
14.4.4	 Planning Deliveries . 124
14.5	Necessary Features Of A Maintenance Procedure . 124
14.6	The Wherewithal For Carrying Out Maintenance . 125
14.7	Carrying Out The Work . . 126
14.7.1	 Decisions to be Made . 126
14.7.2	 The Rule to be Applied . 126
14.7.3	 Responsibility . . 127
14.7.4	 Implementing a Fix at the L Level . 127
14.7.5	 Implementation of the Fix is Deferred . 127
14.8	Module History . 128
14.9	Documentation . 129
14.10 One Further Possibility . 129
14.11 Summary And Extracts . . 130

15 Evolutionary Delivery Culture . 131
15.1	The Issues . . 131
15.2	Project Goals . 131
15.3	Estimation . . 132
15.4	Reappraisal . 133
15.5	Judging Success . . 134
15.6	Customer Participation . . 134
15.7 Culture Of The Developers . 134
15.8	Summary And Extracts . . 136

 References . 138

Software
Projects

xiiPreface

still valid. Indeed, I believe that many, if not all, of them

would be useful, but are overlooked or ignored, in the

employment of modern development methods — and

that the resulting software and systems suffer because

of this.

In creating this electronic version of the book, I have

not attempted to match the page size of the original,

but used A4, with liberal margins. The original index

would therefore be misleading and I have omitted it. I

have, though, retained the reference list, even though

some of the publications on it may now be unobtainable.

For a description of the book, I refer readers to my

original preface, on page xiii.

FR,

May 2014

Editor’s Note
Felix’s copy has been through several more editing

tools and is now laid out in a different way and the

figures have been redrawn for this edition.

 This book was first published in 1997 by John Wiley

& Sons. It has been out of print for some years and, in

that time, I have been asked on a number of occasions

if I could make a copy available. Alas, I could not. But

now, with some difficulty, I have retrieved the original

text and recreated the book.

I was able only to retrieve it by means of a text editor,

and with the text came spurious characters, sometimes

in hoardes, which were easy to identify and eliminate,

and sometimes in small numbers, which were not. If,

in spite of my checks, any of these remain, I apologise.

Please let me know of them.

In re-formatting the text and re-drawing the

figures, I have made some grammatical adjustments

but no changes of significance to the original. This is,

as it was, the story of the lessons that my team and

I learned in the mid-to-late 1980s, as we pioneered

the use of evolutionary delivery in our software

development projects. I believe that these lessons are

Preface
2

xiii Preface

Software
Projects

and software engineering principles and illustrates how

projects fail due to a lack of them. It shows how failure

using traditional methods led to the desire for a new

basis for development, so it is the path to evolutionary

delivery. It ends with an introduction to ED and its

problems in Chapter 6.

Part 2 addresses the management of ED projects.

It offers solutions to ED’s problems and draws on

personal experience of their application. It provides

not only principles, but also guidance on good practice.

Indeed, Chapters 10, 11, 12, and 14 present the details

of procedures that were developed for, and have been

used successfully in, ED projects. Part 2 is the path

through evolutionary delivery.

Whereas the lessons of Part 2 are presented within

the context of ED, the reader will, without difficulty,

perceive that the principles are generally applicable,

particularly those to do with management, strategic

planning, communication, organisation, and developer-

customer relationships.

An understanding of the problems is a necessary

prerequisite to solving them. An understanding

Big-bang and evolutionary delivery
In the title of this book, ‘big-bang’ refers to the

single delivery of a software-based system to its users

at the end of a development project. Typically, such a

project follows the ‘waterfall model’ of development.

‘Evolutionary delivery’ (ED) refers to the provision of

a system in a number of planned deliveries throughout

a project.

Implicit in the waterfall model (and big bang) are

several problems, and ED is intended to overcome some

of them. However, not only does it not resolve all of the

traditional problems, but it also throws up problems of

its own. These can be unexpected, can take a long time

to understand, and, while they are being diagnosed,

understood, and resolved, can set back or even destroy

a project.

What’s in the book
This book is based on experience — of both waterfall-

model and evolutionary-delivery projects.

Part 1 considers the traditional problems of software

development. It offers guidance on project management

Preface

Software
Projects

xivPreface

provide detail. As already mentioned, the lessons of the

ED chapters are in fact generally applicable. In addition,

Chapter 7 offers an overview of an often neglected

subject, but one which I consider of critical importance

to projects — strategy. Project managers would do well

to consider it.

Senior managers, including customers of systems

being developed or to be developed, will find particular

relevance in Chapters 3 and 4, which discuss project

problems and include the roles of senior management

in the discussions, Chapter 7 on strategy and its

relationship to projects, Chapter 8, which includes

the roles of project participants in the vital subject

of creating a project infrastructure, and Chapter 15,

which advises on culture and quality. In addition, they

should find interest in Chapter 5, because it compares

big bang and ED, and Chapter 6 because it introduces

ED. The other chapters, which give more details on

development, are then at their disposal if interest goads

them on to read them.

Acknowledgements
Appreciation is extended to Tom Gilb for many

helpful conversations and arguments in my early days

of employing evolutionary delivery, to George Sykens

for offering a great deal of information and discussion

when I was planning this book, to Peter Jesty, Stan Price

and Les Hatton for reviewing the draft manuscript

and making useful comments for its improvement, to

Martyn Thomas for contributing the Foreword, and to

Elizabeth Avery for help in creating the index.

Chapters 6 and 13 draw on papers by the author

published by the Institution of Electrical Engineers and

the Institution of Mechanical Engineers respectively.

Acknowledgement is made to both institutions.

Throughout the book, the pronoun ‘he’ is used to

imply ‘he or she’. No inference should be drawn from

this abbreviation and no offence is intended by it.

FR

 November 1996.

of solutions, which have already been successfully

implemented, is potentially even more valuable, for it

obviates the need to reinvent them, it saves time and

money, and it can save projects. The advice offered is

both managerial and technical, and is intended not only

for practitioners, such as project managers, software

engineers, and development staff, but also for project

customers, such as senior management, strategic

planners, and users of computer systems.

While the book offers guidance, in some cases in the

form of step-by-step procedures, the reader should be

aware that even these need to be tailored to the needs of

particular circumstances if they are to be most effective.

Routes through the book
This book should be useful on at least two levels.

First, it may be read or scanned for the principles that

it offers, in which case the reader may expect to come

away with a better understanding of the software

development process and its problems, a feel for good

practice, new ideas for improvement, and new insights

into how they might be effected. Second, individual

chapters may be studied for the lessons of what

can go wrong, procedures of what to do, details of

responsibilities for tasks, and advice on ‘dos and don’ts’.

At the end of each chapter, there is a brief review,

which includes extracts from the text. These by no

means encapsulate the entire content of the chapter, but

they offer indications to browsers of what they will find

in it.

Those with time to read Chapter 1 will find that

it offers a historical introduction to the problems of

software development. It sets the scene for the book.

Project managers, software engineers, and all

involved in development projects, who seek guidance

on project issues in general, should find Chapters 2-5,

8, 13, and 15 particularly useful. For insight into ED,

Chapter 6 offers an introduction and Chapters 8-14

xv Forward

Software
Projects

One reason why software suffers a chronic illness is

that the tasks we routinely attempt get more complex

every year. Complexity is the largest single cause of risk

in IT projects and, on one scale, the size and complexity

of many modern projects is dramatic evidence that,

despite the failures, the software industry has been

hugely successful. True, it is nearly thirty years since

computers helped put men on the surface of the moon,

but there is more computing power in most automobiles

today than there was in the Lunar Excursion Module

in 1969. Today we have aircraft that only fly because of

the successful operation of millions of lines of software

— commercial airliners like the Boeing 777™. We

can install enterprise-wide software systems, such as

SAP™ or PeopleSoft™, that support and automate the

key business processes of multinational companies,

operating in dozens of locations, accounting in many

different currencies, integrating business areas from

manufacturing and distribution to retail and cash

collection.

The pace of change has been extraordinary. Since

the world’s first stored-program computer — the

IT projects are inherently risky and, in the past

thirty years, two generations of IT professionals have

discovered a remarkable range of ways to make them

even riskier. Years ago, someone coined the term

‘software crisis’ to describe the intolerable level of project

failures, cost and time overruns, and errors in delivered

programs. Today the same phrase appears from time

to time in the technical press but, with hindsight, we

can see that there was no software crisis, for a crisis

has a limited duration and the patient recovers or dies,

whereas software development still suffers from the

same chronic illness.

You do not have to look far for confirmation: the

difficulties of large projects are often reported in the

newspapers and, increasingly, the parties settle their

dispute in court. The US Department of Defense said, a

decade ago, that it ‘had never had a successful software

intensive project’ and, quite recently, a senior official in

the UK Ministry of Defence echoed the sentiment by

saying that ‘it is now possible to see that MoD has never

yet awarded a software-intensive project to the right

bidder’.

Forward
by Martyn Thomas

Software
Projects

xviForward

almost everywhere. Mature, stable processes lie at the

heart of every engineering profession, and mature

processes are, above all, the way in which experience

is accumulated, refined, and made accessible. In a

craft industry, without mature processes, experience is

passed on haphazardly and unreliably, and the same

mistakes occur over and over again.

Our 40+ year history has not been long enough to

create these mature processes but there are hopeful

signs. The Capability Maturity Model developed by

the Software Engineering Institute at Carnegie Mellon

University focuses on process maturity in software

development organisations and is being adopted by

many organisations to set improvement targets and

demonstrate real progress. The widespread adoption

of ISO 9000-3 and TickIT in the UK is another positive

sign. But where should the developing software

engineer turn today to get the insight and experience,

the knowledge of what has worked and what has failed,

that is not yet taught in university courses?

Read this book. Felix Redmill has long experience

in our industry, leading teams to build systems with

challenging customer requirements, and monitoring

projects run by other people. He has seen successes

and failures, and learned from both. His accumulated

experience is in this book and it will give you something

worth a thousand times the cover price: insight and

wisdom that will reduce the risks on your next project.

Experienced readers will not agree with every

opinion in this book; but they will agree with enough

that they will respect the experience and the intellect

that have formed the opinions with which they disagree,

and they will benefit from having their ideas challenged.

Whatever stage you have reached in your career,

when you have read this you will be a better software

engineer. That is important, because software

development needs better engineers. Software is now

too important to be left to amateurs, however gifted

some of them may appear. The risks are too high, the

consequences of failure too great.

Martyn Thomas

Praxis

October 1996

Manchester University ‘baby’, first run in June 1948

— the cost of processing, memory, data storage and

data transmission has approximately halved every

two years. The contrasts are dramatic: in the 1950s

a three-minute telephone call between the USA and

Europe cost about as much as a family car; in 1969 a

large mainframe computer (an IBM 360/65, say) would

typically have 512Kb of main memory, less than 100Mb

of disk store, and a processor that was slower than the

one in a modern cellular telephone. The IBM 360 needed

air-conditioned, surgically clean accommodation and

(I’m thinking now of the one in University College

London) supported the computing needs of several

thousand people, who punched their programs into

80-column cards.

Software and system design have changed

dramatically too, from machine codes to Visual 4GLs,

from fully custom to enterprise-wide packages and

large-scale systems integration, from mainframe

systems to client-server distributed processing

architectures. New applications have created demands

for extraordinary reliability and systems integrity.

Twenty years ago it would have seemed heroic to build

a computer system with the high integrity needed for

railway signalling or the protection of a nuclear reactor.

Today some companies can routinely build systems

to these high standards — and demonstrate that they

have done so, which is even more challenging.

With this high rate of change in both hardware and

software, it is unsurprising that software developers

believe that they need new approaches to building

systems and that the experience of earlier decades

must be irrelevant. It is unsurprising, self-evident, and

wrong. IT projects still fail far too often, and they fail

for the same reasons they always have: because the

developers have lost control of the development, or lost

sight of the real needs of the customer.

Developing IT systems is an engineering task.

That should be obvious by now (the term ‘software

engineering’ was coined in the 1960s) but software

development remains a craft, rather than engineering,

1

Software
Projects

One
The Path To

Evolutionary Delivery

Software
Projects

2Problems and Panaceas

begins, in this chapter, with a personal view of the

history of software development, and ends with an

introductory explanation of ED and its problems in

Chapter 6.

1.1	 A Brief History Of Software
Development

There has always been reliable software. From the

earliest days of computing, there have been success

stories. The first stored-program-controlled telephone

exchange was opened in the United States in 1965; the

system was huge, and it was successful. The complex

NASA space programmes have depended on software

for control and communications. Now, the majority

of the world’s control functions are carried out by

processors — in industry, commerce and the home. At

the same time, there have also been numerous failed

software development projects. Inestimable amounts of

money have been wasted on projects which have been

abandoned before completion, on software that has been

developed but never used, and on systems which have

contained disastrous flaws. It is from these failures that

‘Evolutionary delivery’ (ED) refers to the delivery

of a computer system in stages over the course of a

project, rather than in a single (‘big bang’) delivery at

the end. Each delivery is not simply a new increment

to be added to the existing system, but a new version

of the system which may include changes to what had

previously been delivered as well as new features.

Previous development methods were mostly based

on the ‘waterfall model’ (explained in the next chapter)

which leads to a ‘big-bang’ delivery at the end of the

project. The problems inherent in ‘big bang’ pointed to

a need for ED, but experience revealed not only that ED

was not an automatic solution to most of them, but also

that it threw up many problems of its own. Part 2 of this

book presents these ED problems along with solutions

which were devised for them.

Many project problems, however, are independent

of the development model and the mode of delivery

of the product, and are the result of the attitudes and

interactions of the people involved. Part 1 examines

these universal problems, as well as those inherent in

the waterfall model and big-bang delivery. The Part

1
Problems and Panaceas

3 Problems and Panaceas

Software
Projects

themselves) as the custodians and exponents of a

mysterious art. But which scientist would announce

that perfection was around the next corner? The

programmers gave themselves away by their naivety,

but it was to be some time before this was obvious to

more than a few.

By the mid-1970s, perfection was still out of sight; and

by now it was even deemed by some to be unreachable.

The artists who had preached its imminence were

losing their credibility: computers had spread their

tentacles globally. Their influence extended not only

into research, but also into industry, government and

private life. It began to be recognized that a profession

as widespread as software development required

professionalism. It could not continue as an esoteric

‘art’. Software had a bad image and this had to be

cleaned up.

An engineering discipline was required. After all,

software development was a technical occupation. As

luck would have it, the term ‘software engineering’

was already gaining currency. It had been adopted at a

NATO conference in Garmisch, Germany, in 1968, and

since that date had been a reminder, at least to those

at the leading edge of improvement, of the direction

in which they needed to steer the change. But, as the

use of the term radiated outwards from the serious

software scientists to the semi-skilled programmers,

it came to be interpreted as something quite different.

Suddenly, to the programmers, programming was an

engineering discipline and they were ‘engineers’. Yet,

the programmers themselves were the gullible dupes

in this fraud. Being ignorant of the real meaning of

engineering, they were unaware of their deficiencies as

engineers. In spite of their self-defined elevation in status,

software development continued to be problematic.

The managers, perhaps naive, perhaps not altogether

familiar with the meaning of engineering discipline

either, believed software engineering to be on the way

in, with significant improvement accompanying it. All

that was required was a little time.

The trouble was that software engineering was seen

as a technical improvement in programming rather

than as a discipline for control. Some formality was

introduced into programming, program specifications,

and even system specifications; tools emerged to aid

programmers and analysts. But while these tools

software development has derived its reputation. In

truth, the reputation of software development projects

as almost invariably being over budget, over time, and

not to specification is not undeserved. Throughout

the relatively short history of commercial software (a

matter of only about fifty years), things have always

been going wrong in its development; and, according

to the developers, they have always been on the point

of being put right.

In the 1960s, we heard that programming was

about to be perfected; there were then to be no more

bugs. In the 1970s, software engineering was about to

change everything. In the 1980s, software engineering

was still on its way in, and, what was more, computer-

aided software engineering (CASE) tools were right

behind it. Together, these would revolutionize software

development projects. But the problems persisted.

Also in the 1980s, however, there was the dawning

of a recognition that engineering implies control

and that control demands management, so project

management as a discipline came into vogue — though

project management skills were seldom evident. More

recently, there has been the drive for quality. With

each advance in thinking, in enlightenment as to the

causes of problems, and in technology, there has been

improvement, but still the problems persist.

As time has passed, the problems have been seen

in different lights. In the 1960s, the emphasis was on

programming. It was new, it was exciting, it was magic,

it was known to only a few. The only drawback was the

flaws in the programs — the ‘bugs’. They would not go

away. Perhaps their numbers would have been seen to

diminish if change had been limited to improvements

in programming technology. But change is never

one-dimensional; as high-level languages replaced

assembly code and debugging became easier, and as

hardware memory became smaller and cheaper, so

programs got longer and more complex, and the bug

density remained about the same.

The expectation of perfect programming was,

however, appealing. Such an idea matched the times,

for practitioners of this new technology of software

programming referred to it as an ‘art’. They wanted

to eat their cake today and still keep it for tomorrow’s

tea; they craved the status of ‘scientists’ or ‘engineers’,

yet thrilled at being considered (and at thinking of

Software
Projects

4Problems and Panaceas

of the tools. They simply wanted to apply tools directly

to tasks, and this is the antithesis of engineering —

which emphasizes the understanding of fundamental

principles. A small variation in the task from that for

which the tool is designed renders the tool inapplicable,

difficult to use, or subject to error. If the person

applying the tool is lucky, the tool is inapplicable and

is discovered to be so. The unlucky person manages

to apply the tool but takes longer over carrying out

the task and introduces error into the process. In the

late 1980s, tool manufacturers acquired too great an

influence over software developers. Their marketing,

while not always accurate, was persuasive. It suggested

to ‘software engineers’ that software could be produced

and tested thoughtlessly. Had they been engineers the

programmers and analysts would have recognized

the flaw in this; as it was many brought their projects

into difficulty by using tools which were sometimes

inappropriate to the job in hand and often inappropriate

to any job.

By the end of the 1980s, it was realized that

‘engineering’ is not a synonym for ‘techniques’; that it

involves applying techniques in a controlled way so as to

achieve the desired results within approved constraints;

and that, therefore, a significant and essential element of

engineering discipline is management — agreeing and

understanding responsibilities, working to procedures

which provide control mechanisms, and planning

and coordinating teams and tasks so as to manage a

project rather than merely the technical development

of a system. So it came to be accepted, belatedly, that

software engineering concerns not merely better

programming but, importantly, the control of projects

and the quality of products.

By the end of the 1980s, the quality drive, which had

already become widespread (or, at least, widely spoken

of) in industry, was beginning slowly to infiltrate the

software development community. Gradually, software

development companies and departments started to

undergo quality improvement programmes, and by

the 1990s some were beginning to seek certification

to quality management standards. As they did so, it

became clear that the high-quality software, which had

always been the goal, would not be achieved merely by

techniques, but might be approached by a combination

of techniques, procedures and standards within the

were beneficial in that they aided the achievement of

correctness, they did nothing to ensure effectiveness;

moreover, they often locked their users into a set mode of

operation which resulted in inflexibility. Programmers

set about adjusting the problem to fit the standard

solution provided by the tool, rather than considering

how to use, or adapt, the tool to solve the problem. Nor

did they frequently question whether they were using

the right tool for the job.

By the mid-1980s, the accent was beginning to be on

projects rather than merely on programming. The life

cycle of a project was defined. Standards were realized

by many to be important, but employed by few. Every

programmer was a software engineer, but engineering

discipline had penetrated a minority of software

development organizations. CASE tools were the next

panacea. These software-based tools, produced to

automate the various tasks in the development process,

had a mixed effect. Some, such as configuration

management tools, were genuinely useful; others

wasted their users’ time. Tools made many tasks easier,

but they often allowed, or even encouraged, a sloppy

approach. But the most pernicious and extensive

damage done by the ‘tool culture’ was the unquestioned

reliance on tools, which many programmers, analysts

and designers developed, at the expense of an

engineering attitude to understanding the problem in

hand and then designing a solution appropriate to it.

Carrying out a task requires a method. If the task

is repetitive, the method needs to be systematic; then a

tool may be developed in support of it. If similar, rather

than identical, versions of the task are to be repeated,

the method may need to be varied in each case. To

vary the method, the practitioner applying it needs

to understand it and to understand how it applies to

the task. With such understanding, the practitioner

can adapt a tool (if the tool is adaptable) to support

a varied method. However, when the practitioner

carrying out a task believes (perhaps as the result of

a tool supplier’s advertising) that the tool is designed

to support the task, rather than to support a given

method of carrying out the task, trouble must ensue.

Analysts, designers and programmers all sought tools

to support tasks, without understanding the principles

of the methods involved — either their own methods of

tackling the tasks or the methods built into the design

5 Problems and Panaceas

Software
Projects

half a century since the first program was written, it

has come to be the first choice for almost every control

function, in the office, in the home, in industry, and

in almost every product, from washing machines to

aircraft. But success has followed a learning curve

which has included a great deal of inefficiency and

ineffectiveness. The proponents of the young discipline

of software development have taken time to learn its

lessons, and there are many lessons still to be learned.

From a self-centred infant of the 1960s, it became a

precocious child in the 1970s, then a self-opinionated

adolescent in the 1980s. Now, in the mid-1990s, it has

reached a state of young adulthood, beginning (but

only beginning) to take the world seriously, beginning

to listen to the criticism of its mistakes and to consider

the lessons to be learned from them.

The result of this growing up, this learning curve,

has been that more and more companies now take

software development seriously, applying to it control

procedures and quality assurance. But the speed of

growth has meant that many (perhaps most) companies

are still far behind, treating the development of software

as a part-time task for one of the staff who claims to

be adept at ‘programming’. And even the advanced

companies are not always respectful of the lessons of

the past.

But it is generally recognized that the head-in-the-

clouds notion of putting an industry right by this or

that panacea were unrealistic and that fundamental

improvement can come only from a better understanding

and application of engineering principles in the

development process and the assessment of the product

against its objectives. For, what good is the bug-free

program if it is the wrong program? The trend towards

a more professional attitude continues and is typified

by the gradual move away from the ‘fire, aim, ready’

approach of the 1970s, in which a sketchily designed

solution to an unspecified problem was elaborately

and cleverly coded. Now there is a recognition of the

importance of adequate and accurate specification

to achieving an effective solution, and this has led to

more time being spent on defining the system to be

developed, with proportionately less on building it.

True engineering is based on striving for effectiveness

as well as efficiency.

In the mid-1980s, when the story of this book began,

context of management and quality assurance.

Now, some years later, there is recognition by a

few that standards and procedures can only take us a

certain distance. Quality is not consistently achieved

through the narrow constraints of rules, but rather by

a genuine desire to achieve it. Quality management

systems are necessary but not sufficient, and what is

required is a ‘quality culture’ within which problems

are not swept under the carpet and ‘It meets objective

measurable criteria’ replaces ‘it will do’ as the test of

acceptance of a product. But a quality culture does

not arise by chance. In the coming years it is going to

be even more difficult for management to change the

culture in their domains that it has been for them to

introduce standards and quality management systems.

Managers can point to the latter as ‘being there’ even

if they are not being applied (which in most cases

they still are not). But culture will not be changed by

remote instructions or by documents. It responds only

to leadership and example. Managers will need to

develop an understanding of what culture is and what

affects it, and to attend to their own behaviour as well

as to what they say, so as to lead cultural improvement

[Levene 97]. If they do not, quality will advance only as

far as rules can take it.

Thus, by the 1990s, the astute could see that the

successive philosopher’s stones of the previous three

decades, which they had recognized at the time as

not to be panaceas, had not been futile hopes or lost

causes either. The ‘perfect’ programming of the 1960s

could not materialize, but confidence in software could

be increased greatly by a combination of disciplined

programming, the use of tools, code inspections,

configuration management, and testing. The concept

of software engineering, misunderstood during the

1970s, would not lead to Utopia, but it had established

a path towards a genuine engineering discipline.

Many of the tools of the 1980s had been designed for

enriching suppliers rather than supporting developers,

but when the methods of software development,

project management, and quality assurance were better

understood, and the experience which had been gained

in tool making was applied to creating tools to support

them, real benefits accrued.

We should acknowledge success where we find it,

and software has certainly been successful. In scarcely

Software
Projects

6Problems and Panaceas

takes longer over carrying out the task and

introduces error into the process.

•	 ‘Engineering’ is not a synonym for ‘techniques’;

it involves applying techniques in a controlled

way so as to achieve the desired results

within approved constraints; and, therefore, a

significant and essential element of engineering

discipline is management — agreeing and

understanding responsibilities, working to

procedures which provide control mechanisms,

and planning and coordinating teams and tasks

so as to manage a project rather than merely the

technical development of a system.

•	 Standards and procedures can only take us

a certain distance. Quality is not consistently

achieved through the narrow constraints of

rules, but rather by a genuine desire to achieve

it. Quality management systems are necessary

but not sufficient, and what is required is a

‘quality culture’ within which problems are not

swept under the carpet and ‘It meets objective

measurable criteria’ replaces ‘It will do’ as the

test of acceptance of a product.

•	 A quality culture does not arise by chance

... Culture will not be changed by remote

instructions or by documents. It responds only

to leadership and example. Managers will need

to develop an understanding of what culture is

and what affects it, and to attend to their own

behaviour as well as to what they say, so as to

lead cultural improvement.

many of what we now know to be the fundamental

necessities of software engineering were not in place.

For example, project management was often ignored or

was not effectively or efficiently applied; there was little

strategic planning of systems or projects, so project

boundaries could not be defined; projects were often

too large, and were allowed unconstrained growth.

Since then we have gathered some wisdom. Yet, in our

young adulthood, project management is still not very

good — but it is better than before; strategic planning

is recognized as a necessity — but it is hardly ever

carried out; it is agreed that smaller projects stand a

better chance of success than large ones — but projects

continue to grow in size, complexity, and budget.

Despite the advance of technology and control

techniques, we have not developed an immunity

against software bugs. Projects continue to be late and

over budget, systems continue not to meet their users’

requirements, and reports of project failures are as

persistent as ever.

1.2	 Summary And Extracts
This chapter has offered a brief and personal review

of the history of software development. The following

are extracts.

•	 When the practitioner carrying out a task

believes (perhaps as the result of a tool supplier’s

advertising) that the tool is designed to support

the task, rather than to support a method of

carrying out the task, trouble must ensue ... If

the person applying the tool is lucky, the tool

is inapplicable and is discovered to be so. The

unlucky person manages to apply the tool but

7 A Natural Order of Events

Software
Projects

It was in this context that in the mid-1980s a colleague

remarked to me that what we had was a culture of ‘fire,

aim, ready’. This really wasn’t a very good joke, but I

was impressed by it and have even repeated it several

times since. It reflects just enough wit to appeal to those

who haven’t heard it before.

But what point was my colleague making? It was

that it is not sensible to attempt to build a system before

designing it, or to design it before it has been specified.

And most of us would agree with that. Both experience

and common sense have led us to conclude that a

natural order of events in development is: specification,

high-level design, further design at increasingly

detailed levels, the programming of individual

modules, the integration of modules to create sub-

systems, the integration of sub-systems to create the

system, validation of the system, and then delivery and

acceptance testing. Validation is checking the system,

by whatever means, to ensure that it conforms to its

specification — that it is the right system for delivery

to the customer.

In the mid-to-late 1980s, there was a surge in emphasis

on the importance of good specification. This was in

response to a recognition of the tendency of programmers

to ‘know what was needed’ and to commence work before

a design or even a specification had been prepared. The

programmer would say to the customer, ‘I know what you

mean,’ and immediately begin to ‘cut code’. At the end of

the project (prior to acceptance testing), the ‘paperwork’

would be completed by drawing up a design to conform

to the system which had been produced. The intention

often existed to prepare a specification document, for

it was recognized that this would be useful when the

system needed to be changed later, but time was hardly

ever found to do this. The result of this process was that

much of the software produced was the wrong software:

at the end of two years or more of ‘cutting code’ the

wrong system was produced. Sometimes it was well

programmed, and occasionally it was well tested, but it

did not meet the users’ requirements. It was rare for a

system to satisfy its users without modification, and many

systems were abandoned altogether as so unusable as not

to be worth modifying.

2
A Natural Order of Events

Software
Projects

8A Natural Order of Events

for the substance and criticize the model, claiming that

it does not allow for verification. This, it seems, reflects

slavery to the model rather than the use of it as a tool.

Nevertheless, a fairer representation would be that of

Figure 2.2.

A great advantage of the waterfall model is that it

represents basic engineering practice: that specification

should precede design, design should precede

construction, etc. This approach has, in theory, been

the traditional basis of software development and, if

it had been adhered to in all cases, a great deal less

software would over the years have been abandoned

as useless. But the fire-aim-ready culture of the

magician programmers meant that the model was a

representation of an ideal rather than of reality. It was

often unfairly blamed for poor development practices

— and we shall discuss these in the next chapter.

If the waterfall model is applied to an entire project, it

produces a formal division of the project into a number

of discrete stages each of which, by implication, must

be completed before the commencement of the next. If

this process is coupled with sound project management

procedures, such as the formal signing off of each stage,

it can provide a good basis for project control. However,

if the project is large and the stages long, it can lead to

the requirements specification being out of date before

the system has been completed. But let us be clear about

one thing: there is no suggestion in the model itself that

it must be applied to an entire project. All the model

provides is a statement of our agreed natural order of

events. Thus, the waterfall model exhorts that we follow

what we agree to be good practice; it can be applied to

the development of a sub-system or a module as well

as to a system. Further, as we shall see in Part 2, it is a

sound basis for the development of each delivery of an

evolutionary delivery project.

There are, however, two reservations to be mentioned

concerning the waterfall model as a representation of the

life cycle of a project. The first is a distinct disadvantage

to those using it as a guide to development; the second

is a limitation of the model.

The first reservation, and the greatest disadvantage

of the waterfall model, is that the product of the

development process, ‘the target system’, is not available

for testing or trial by its intended users until the end

of the project. As we shall see in the next chapter, a

2.1	 The Waterfall Model
The model of development which reflects this

‘natural order of events’ is depicted in Figure 2.1 (this

representation is concerned with the principle and shows

only broad project stages). The horizontal spacing of the

stages, along an imaginary time axis, suggests that one

stage should not begin until the previous one has been

completed. Thus, the output of one stage cascades down

to be the specification for the next, leading to the title by

which the model is known: the ‘waterfall model’. It is

this clear identification of the specification of any given

stage which provides the basis for the verification of the

work carried out. Verification is checking (by whatever

means) to ensure that the product of any stage of the

project is a faithful translation of its specification — the

product of the previous stage. Thus, if the specification

for a stage is clearly defined, there is also the definition

of what the end product of the stage should be verified

against. If an error occurs in translation and is not

detected by verification, it becomes a feature of the

next stage and will be propagated onwards into the

system. Validation of the system against its original

specification is intended to detect such occurrences

— but by the time of validation, correction may be an

expensive process, if the error occurred at an early stage

of the life cycle.

The stark representation of Figure 2.1 does not show

the verification process. Not showing it undervalues

the model, for the waterfall model does not preclude

verification and feedback. Yet, many take the shadow

Figure 2.1: A Simple Representation of the Waterfall Model

Figure 2.2: A Representation of the Waterfall Model Showing
Feedback between Stages

9 A Natural Order of Events

Software
Projects

2.2	 The V Model
Something which the waterfall model does not show

is the verification which should occur at each stage of

development. One means of illustrating verification

in the development process is by rearranging the

waterfall model into the ‘V’ model, as in Figure 2.3. In

this, successive steps in the description of the system

(its specification and design) are expanded from those

shown in the waterfall model and depicted descending

the left-hand side of the V. The detail increases with

each step, from a description of what is required

to an overview of the system which will meet the

requirements, and then, by decomposition, through a

number of levels of increasing design detail, until the

modules of program code are defined. The number of

levels of design is a matter for the project manager and

designers, and is (arbitrarily) shown as three in Figure

2.3.

At the base of the V, programming of the smallest

individual units of software is carried out. This process

is the creation of the components from which the system

will be built. The successive steps in the building and

confirmation of the system (its integration, verification,

validation and acceptance testing) are then shown

ascending the right-hand side.

Each step on the right-hand side of the V is

equivalent to one on the left-hand side, such that the

system description on the left forms the basis of testing

its equivalent level of system integration on the right.

Thus, it is against the module design that the formal

module tests are carried out, against the sub-system

design that an integrated sub-system is tested, and so

on.

The V model is not different in principle from

frequent reason for software not meeting its users’

requirements is that the requirements have changed

between the time that they were specified and the time

that the system is brought into service. The longer the

time and the larger the project, the greater the risk of

this occurring. There are ways of lessening the effect

of the problem, such as good communication between

the developers and the users, and providing the users

with prototypes to demonstrate various aspects of the

proposed system, but, in principle, the problem remains

in the model.

The second reservation is that there is an implicit

assumption in the model that all will go well throughout

the project: the model suggests a unidirectional flow

of activities through the project. It does not explicitly

make provision for assessing risks and taking steps to

manage them, which often means returning to an earlier

stage of the project to make adjustments. As experience

shows that projects seldom conform to their original

plans, it is safe to assume that uncertainties existed

from the beginning, even if they were not recognized

or if no attempt was made to recognize them. A model

which includes the assessment of risk is discussed in

Section 2.3 below.

These two reservations suggest an assessment

of the conditions under which the waterfall model is

most effective: when the specification is complete, the

risk of change is small, the solution has been clearly

determined, and the project is expected to be short

— less than a year of elapsed time. I do not say that it

should not be used in other circumstances; only that,

in my experience, its effectiveness diminishes as these

circumstances cease to maintain.

The two problems just discussed refer to the

waterfall model as the representation of a project. There

is a third problem, and that is that the model starts at

the project rather than at the strategy from which the

project should have arisen. By not introducing the

concept or the importance of strategy, a project model

fails to warn the project manager of the likely difficulties

ahead if the project does not have a firm foundation in

business (rather than merely end user) needs. This topic

is considered in the next chapter and is the subject of

Chapter 7.

Figure 2.3: The ‘V’ Development Model

Software
Projects

10A Natural Order of Events

being initiated, before the next is commenced. Each

quadrant in the figure depicts one or more activities.

The first quadrant identifies the definition stage

of the cycle. In this, the objectives of the cycle, the

constraints on it (such as limitations on time and

resources), the preferred means of proceeding, and any

alternative means of proceeding, are determined.

The second quadrant identifies the process of

analysing the path ahead. Here, the alternatives

previously identified are evaluated and any risks

involved in the way forward are identified, assessed

and resolved. Risk analysis may involve administrative

assessments, such as of competence and training, or

technical assessments of the difficulties in development.

If on evaluation an alternative means of proceeding is

assessed to be preferable to the original choice, it may

be taken. (See [Redmill 97] for an explanation of risk

management and a qualitative process for carrying it

out.)

The third quadrant depicts the carrying out of

development. As with the other quadrants, what is

developed depends on the stage of the project. It might

be a specification or it might be a sub-system, or a

new version of a system. Verification of what has been

developed is also included in this quadrant.

The fourth quadrant indicates the planning of what

is to be done in the next cycle of the process.

Thus, the spiral model proceeds in steps, with

a pause and review at the end of each. It is directly

concerned with risk and is, in fact, a risk-based model,

rather than being product-based, as the waterfall model

is. Once under way, a waterfall model project proceeds

onwards towards completion of the development of the

product along a predetermined path. But in a spiral

model project, the risks are assessed at each step and

the path which best overcomes the identified risks is

taken. Thus the model inherently allows, and indeed

implicitly provides for, the cancellation of the project if

the risks suggest imminent failure.

 The model may be used for the development of

an entire system, a sub-system, or a component, or

the enhancement of a system. But perhaps its most

significant feature is its focus on the assessment of

risk. It has reminded many project managers that the

blind rush towards the distant goal of a product can be

inefficient and ineffective if the path ahead is blocked.

the waterfall model. It is a different view of the same

staged process which reveals additional detail. Like the

waterfall model, it is usually portrayed as a model of

how a project is, or should be, structured. Also like the

waterfall model, its application need not be restricted

to the life cycle of an entire project; it can be applied to

the development or change of a sub-system with equal

effect.

2.3	 The Spiral Model
In any project, there is the need to pause from time

to time, to review progress, question our direction and

the intention which led to this direction, and perhaps

to change course somewhat and take a fresh and more

appropriate path. However far advanced we may be,

there is likely to be a need to question earlier decisions

and assess the risks which lie on the path ahead.

The waterfall model does not illustrate this mode of

operation. A development model which does is Boehm’s

spiral model [Boehm 88].

This is shown in Figure 2.4, with the project

commencing at a point on the x axis to the left of the

origin and proceeding clockwise around the origin.

Progress is shown as an outward spiral, with every

cycle going through the same sequence of activities, and

the cycle’s result being reviewed after the process has

rotated through 360 degrees. A project would typically

consist of a number of cycles, with the success of each

being reviewed, and perhaps with a change of direction

Figure 2.4: Boehm’s Spiral Model of Development

11 A Natural Order of Events

Software
Projects

described.

The diagrammatic form of the matrix model is (not

surprisingly) a matrix, the rows of which represent the

stages of the system life cycle which are of interest at the

time of using the model. If only the development project

is under consideration, the stages may be chosen, as in

Figure 2.5, to be those of the waterfall model.

The columns of the matrix represent activities. When

the activities are defined in ‘coarse grain’, they may

take the titles of the stages themselves (as in Figure 2.5)

because, typically, the title of a stage is indicative of the

principal activity within the stage — or, at least, of the

goal of the stage. For example, the main purpose of the

specification stage is the production of a specification.

When more detail is required, the activities may

be defined in ‘finer grain’. Then the various activities

which are necessary in a given stage may be listed. To

pursue the specification stage example, the activities

of requirements capture, requirements expression,

requirements verification, and requirements analysis

may be listed, as well as specification preparation and

specification validation. Indeed, any activities of interest

for a given purpose may be represented as columns of

the model, as in Figure 2.6.

The cells of the matrix may be used for recording

data concerning the activities (such as the time spent

on them) when they are carried out, and, later, for

making forecasts about the activities to be carried out

on another occasion (for example, in another project).

During a project, the cells are used for storing the

amount of effort invested in the activities defined in

the column headings, during the stages defined in the

row titles — but if a listed activity is not carried out in

a particular stage, the appropriate cell of the matrix is

unused. In the first place, the amount of effort may be

recorded in absolute terms (for example, in man-hours

or man-days), the model thus being used as a direct

repository of relevant data. An advantage of this is

that having such a repository (and a simple one) is an

incentive to collect and employ the data for which it is

to be used. Collecting the data implies monitoring the

progress of the project and measuring the quantities

(for example, manpower) which it takes to make the

progress; employing the data implies, first, comparing it

against the planned or forecast values of the quantities

in question and, second, using it to make improved

Indeed, one possible result of pausing, reviewing

progress, and assessing future risks is the recognition

that the present goal is not the ideal product. Then it

may be appropriate to initiate a strategic review of the

project.

2.4	 The Matrix Model
The chances are that if a software developer has

used a life cycle model it will have been one of the three

described above. Yet, while each one offers certain

advantages, they all share a major disadvantage: none

of the three models reflects the true course of a project,

for all define its stages as being sequential and do not

allow for further work to be carried out on a stage after

that stage has been ‘completed’. In practice, there is a

great deal of iteration between the stages of a project.

A further disadvantage of the three models is that

none is truly a system life cycle model, for all are

concerned only with the stages of a development project.

For example, as we shall see in Chapter 14, when the

waterfall model is extended to include a maintenance

stage, this causes rather than resolves problems. To be

fair, the models are intended as project tools and do

not purport to represent life-cycle stages before the

commencement of a project or after its end. Yet, it would

be useful to represent life-cycle stages other than those

during development. A model — the matrix model —

which can overcome these two disadvantages is briefly

Figure 2.5: The Matrix Model — A Simple Example

Software
Projects

12A Natural Order of Events

and their accuracy diminishes as the variables on

which they depend change — variables such as the

type of project, the type and composition of the team,

and the team culture. Accuracy of prediction is also

limited when it is based on a sample of one. But if the

matrix is updated after each similar project, accuracy

increases. It is most accurate if used in future projects

by the same team which used it for the compilation of

the figures in the past — but this is not a limitation on

the matrix model, it is a fact of any estimation process.

In the same way as described above, the model can

be used to provide the basis for recording the effort of

any given activity during the project by allocating it

a column of the matrix. This is particularly useful for

activities such as risk management and planning which

are not confined to one life-cycle stage. With planning

being carried out by a number of people (project

manager, development manager, team leaders, etc.)

during all stages of a project, it would be interesting and

useful to know how much effort was being invested in it

— for example, with a view to improving the planning

mechanism within the organization. The penultimate

and anti-penultimate columns of the matrix of Figure

2.6 are labelled ‘planning’ and ‘risk management’

respectively.

A feature of the matrix model is that it is not confined

to the project life cycle. It may be used for activities

before the project commences (such as strategic

planning) or after the project ends (such as maintenance

forecasts and plans for the remainder of the current

project and for future projects.

At the end of a stage, or of the project, the figures

which were earlier recorded in absolute terms may

be converted into percentages. The effort expended

on a particular activity carried out in a stage may be

calculated as a proportion of the total effort expended

during that stage, or of the total effort expended on that

activity throughout the project. Similarly, the total effort

spent on an activity may be calculated as a percentage

of the total project effort. This is particularly useful in

determining the proportion of project effort which is

put into an activity like planning, which is (or should

be) carried out at all stages. It is also useful when (say) a

new technology has been used in the project and there

is a need for a basis for estimation in the future.

The numbers in Figure 2.6 (only partially completed)

offer an example of the use of the cells for storing

percentages. They show that 58% of the requirements

elicitation activity was carried out during the

requirements elicitation and specification stage of the

project, 21% during design, and so on.

If there is confidence that the figures in the cells

are accurate representations of past projects, they offer

an easy-to-use guide to estimation and planning for

future projects. At the end of the first project in which

the matrix model is used, the calculated percentages

provide predictors of what may be expected in another

similar project. But beware: they are only predictors,

Figure 2.6: The Matrix Model — A More Detailed Example

13 A Natural Order of Events

Software
Projects

offer the basis for estimating the effort required

for the various activities in future projects, not

only in the particular stages in which they are

traditionally supposed to be carried out, but in

all stages.

The model offers some of the advantages of the

waterfall model because its rows define the stages of

the project. It also offers some of the advantages of the

spiral model because it suggests the opportunity for

change — and gives permission (makes it acceptable)

to make change. However, it goes further and offers its

own advantages. As will be seen in Chapter 9, it may be

used to complement the other models.

2.5	 The Thing About Models
The thing about models is that they are models. By

definition, they are approximations, not the real thing.

But people tend to forget or ignore the approximations

and limitations of the model they are using. Their

implicit assumption is that they are dealing with the

real thing. The price of this assumption is error.

If we know everything there is to know about

something, we don’t need a model of it: we have the

thing itself, fully detailed. The problem of having

something fully detailed is that there may be too much

of it; we may have more detail, more complexity, than

we can cope with. One reason, therefore, for creating a

model is to limit the information we have to deal with

to a manageable amount — while ensuring (or hoping)

that it is sufficient for the purpose in hand. So a model

is an approximation. Consequently, it is only likely to

be reliable if it is used within the scope of application

defined by the assumptions implicit within it. Thus,

a valid criticism of a model may be that its accuracy

within its defined scope of application is less than that

claimed for it. It is not a valid criticism of a model to

complain of its failure outside of its defined scope. A

frequent problem is that models are used outside of

their intended scope of application.

A city street map is a model. To make this perfect,

we would have to make a map the size of the city,

containing not only every street, but also every house,

room, item of furniture and, indeed, every map in the

city. Even if it were practical to create such a model, we

would not need it, for it would be no different from the

real thing which it would be as easy to study. But any

and operation in a given mode). A separate matrix, with

operations and maintenance activities, may be drawn

up for the operations stage of a system’s life cycle.

 It is of immeasurable importance to have a sound

strategic basis for a project and continued strategic

involvement throughout (this is discussed in Chapter

7). While it is not often possible to identify the strategic

planning which has gone into the project in advance

of the ‘first’ project stage, it is certainly possible to

measure the strategic input during the remainder of

the life cycle. Thus, ‘strategic involvement’ is shown as

the final activity (column) in the example of Figure 2.6.

Other distinct advantages of the matrix model, and

a summary of some already mentioned are:

•	 The model’s row titles offer guidance, like the

waterfall model, on the stages of the life cycle.

These may be defined broadly, as in Figure 2.5,

or in greater detail so that they more closely

reflect activities, as in Figure 2.6.

•	 The rows also offer guidance on the proper

order in which an organisation expects the

stages to be carried out.

•	 The activities represented by the column titles

may also be defined in broad terms or in finer

detail.

•	 It is not constrained to define only stages of

a project, and also defines activities within

stages — i.e., the matrix need not be square (see

Figure 2.6). It then performs the added function

of a checklist to remind the project manager

of the need for the activities (such as strategic

involvement) represented by the columns.

•	 It reminds us that change is always taking

place in a system, and that nothing is wholly

done ‘in its place’ only. Whether this is or is not

recognised has an enormous impact on the way

in which a project is managed, but the models in

use contribute to its being ignored.

•	 The model provides a basis for recording what

really goes on during (and after) a project. When

empty, the model is a form for recording the

time spent on the various activities, whenever

they are carried out.

•	 It provides a predictor of what to expect in future

projects. The cells, when containing percentage

figures derived from one or more past projects,

Software
Projects

14A Natural Order of Events

being misled by its limitations. A developer should

be prepared to introduce his own best practice to

compensate for any limitations. In other words, a

professional should possess professional discernment

and judgement and be capable of applying them.

A model, then, is an approximation, created to be

a vehicle for expressing or exploring certain defined

phenomena. It is created to convey certain points,

ignoring others which seem unimportant to the

circumstances in hand. If these aspects were important,

a different model would be necessary. The results or

conclusions derived from a model must therefore also

be approximate; but they would be valid within the

context of the model’s assumptions and limitations if

the model is appropriate to its application. If the model

is applied inappropriately, false conclusions are likely

to be drawn. Because a model’s users are usually not

its creator, this often occurs: the fault for poor results

frequently lies with the users for applying the model

outside of its intended scope.

We saw above that the waterfall model reflects

a natural order of

events: that the stages

of development

should proceed in a

given sequence. In

order to emphasize

this point, further

detail is excluded

from the model.

Yet, if a developer is

found not to carry

out verification, or

quality assurance,

can we accept the

excuse that these activities were not explicitly displayed

on the waterfall model?

There is much which goes on within a development

project which the model does not show. For example,

within each stage, greater efficiency and higher quality

can be achieved by the use of training for the staff,

task procedures, standards, peer checks and formal

verification of the work carried out, and quality

assurance. These activities are presented in the model

of Figure 2.7.

Because the waterfall model is not explicit on

model which is smaller and which contains less detail

is a compromise of reality.

Usually our city map is adequate for finding streets

and planning routes. But if it contained too much

information, either it would be large, difficult to use

and not portable, or the print would be too small to be

legible. So it may not provide, for example, information

on the numbering of houses along the streets, or on the

gradients of streets. If the pedestrian with an aversion

to hills or an inability to climb them assumes that

because the map does not show hills there is none, he

is attempting to use the map beyond its limitations

and paying the price for doing this by making a false

assumption.

On asking, ‘What is to be the purpose of this model?’

the model’s creator attempts to minimize complexity by

omitting all details not relevant to the stated purpose.

But, if he omits a feature which is relevant, he has

started with an incorrect assumption which would

affect all calculations and decisions based on the model.

If, for instance, a street map is being prepared for the

purpose of

planning walks

for invalids,

the lack of

information on

street gradients

may indeed

be a severe

deficiency.

A street

map is tangible,

used in this

d i s c u s s i o n

because it is

a readily understood model. But there are also

conceptual models, for example models of the

structure, the education, or the health of society. The

waterfall, V and spiral development models described

above are conceptual. They are approximations to the

development process, produced in order to illustrate

certain points, and they include assumptions and

limitations just as a street map does. Care should be

observed when either employing or criticizing them. If

both a model’s deficiencies and its useful aspects are

understood, it is possible to be guided by it while not

Figure 2.7: Examples of Activities Carried Out in a Development Stage

15 A Natural Order of Events

Software
Projects

shortcomings, the obvious failures of projects, and the

lack of understanding of the real problems which existed

in the projects (and still do). But the waterfall model,

and models in general, have not let us down. We have

let ourselves down in the application of the models. Let

me raise a question here: do we ‘follow’ the waterfall

model, or does the model represent what we do? The

answer should be, ‘A bit of both.’ Before the creation of

the model, there were development projects. Then came

the model to represent what had been established as

good practice and to guide the uninformed. It was the

same with the spiral model. This was not a hypothesis

of what might conceivably be useful, but Boehm’s view

of what goes on in practice. Thus, in development, we

may begin by following a model. But then we must

observe how well it serves us; and when we find that it

does not serve us adequately, we must modify our way

of working. If this is successful, we may modify the

model — remembering that the modification may only

be applicable in the circumstances of our type of project.

In this way do both ‘best practice’ and useful models

evolve. A problem comes when we publish the modified

model without drawing attention to its limitations or to

our special circumstances, thus giving the impression

that it is suitable for universal application. Then, if its

new users are not astute, they will follow it blindly and

be led into trouble; their projects will fail.

2.6	 Summary And Extracts
This chapter has described the waterfall, V and

spiral models, proposed a matrix model to compliment

them, and made a commentary on the use of models in

general. The following are extracts from the text.

•	 There are two reservations concerning the

waterfall model as a representation of the life

cycle of a project. The first is that ‘the target

system’ is not available for testing or trial by its

intended users until the end of the project. The

second is that there is an implicit assumption in

the model that all will go well throughout the

project: the model suggests a unidirectional flow

of activities. It does not explicitly make provision

for assessing risks and taking steps to manage

them, which often means returning to an earlier

stage of the project to make adjustments.

•	 The waterfall model is most effective when the

when and how verification should take place within

a development project, it is useful to compliment it

with the V model. The V model does not contradict the

waterfall model; nor is it an alternative to it. It brings

out different aspects of the same thing and is another

view of the events defined and ordered in the waterfall

model. The two models together provide a fuller

description of the conduct of a project than either one

on its own. Yet, I have heard people discussing whether

to base their project on the waterfall or the V model.

And I have known software engineering lecturers

to give their students the choice of which to use in a

project.

Different models are intended to illustrate different

points. A model is only a guide, not a textbook. It is

up to the user to understand the process which is

represented in order to benefit, without being misled,

from the guidance offered by the model. Developers

need to understand the business of development, not

follow a model blindly. Their natural reaction to a new

model should be to seek to understand its benefits and

limitations, in order to know when and where to employ

it within its intended scope of use. The developer can

then recognize those aspects on which the model

does not offer guidance and, if guidance is required,

seek it elsewhere, while deriving the advantages of the

model where it is valid. But too often developers do

not understand the process which a model represents

and they seek not guidance but explicit direction from

it. And here lies one of the big problems in software

engineering. Too often ‘software engineers’ do not

understand either software or engineering. Engineers

should know what they are doing; and if a software

engineer chooses to use the waterfall model as a tool, he

should know why he is using it and in what context. He

should also know what its limitations are. If he does not,

he is wrong to choose it as a tool. It is unacceptable for

an engineer to blame his tools for his own inadequacies.

Sensible use of a model requires discernment, but

too often users are not discerning. A model is a symbol,

but they want a sign to follow blindly. Models and tools

should serve us; we should not be slaves to them.

I labour this point because it was fashionable in

the mid-to-late 1980s to make the waterfall model the

scapegoat for all the failures of software development

projects. It was an easy target — because of its recognized

Software
Projects

16A Natural Order of Events

•	 The matrix model reminds us that change

is always taking place in a system, and that

nothing is wholly done ‘in its place’ only.

•	 	 People tend to forget or ignore the

approximations and limitations of the model

they are using. Their implicit assumption is that

they are dealing with the real thing. The price of

this assumption is error.

•	 The results or conclusions derived from a model

must be approximate; but they would be valid

within the context of the model’s assumptions

and limitations if the model is appropriate

to its application. If the model is applied

inappropriately, false conclusions are likely to

be drawn.

•	 Too often developers do not understand the

process which a model represents and they

seek not guidance but explicit direction from it

... Engineers should know what they are doing;

and if a software engineer chooses to use the

waterfall model as a tool, he should know why

he is using it and in what context. He should

also know what its limitations are.

specification is complete, the risk of change is

small, the solution has been clearly determined,

and the project is expected to be short — less

than a year of elapsed time.

•	 The V model is not different in principle from

the waterfall model. It is a different view of the

same staged process which reveals additional

detail.

•	 The spiral model proceeds in steps, with a pause

and review at the end of each. It is directly

concerned with risk and is, in fact, a risk-based

model, rather than being product-based, as the

waterfall model is ...

•	 It has reminded many project managers that the

blind rush towards the distant goal of a product

can be inefficient and ineffective if the path

ahead is blocked.

•	 A feature of the matrix model is that it is not

confined to the project life cycle. It may be used

for activities before the project commences (such

as strategic planning) or after the project ends

(such as maintenance and operation in a given

mode).

17 Lessons in Software Development

Software
Projects

and users’ more frequent complaint is that it does not

meet their requirements, which is almost certainly

not the same thing. What they usually mean is that

the system does not meet their requirements as they

are at the time of delivery rather that at the time of

specification. Nothing stands still; requirements change

even as the system to fulfil them is being developed. If

the developers do not keep up with the changes in the

customer’s organization as the project proceeds, there

is a fair chance that the delivered system will not meet

the real requirements at the time of delivery, even if it

meets its specification.

Indeed, it is well known that not only do delivered

systems frequently not meet their users’ requirements,

but also that they are late and over budget. So what are

the causes? All things are in relationship with each other,

and their relationships form not only chains of cause

and effect, but also networks of interaction, multiple

causes, and diverse consequences. What is seen as a

cause from one point of view is seen as an effect from

another. One person’s problem is the cause of another

person’s problem. The three problems perceived by

 It was mentioned in Chapter 1 that software

development has traditionally suffered from a number

of problems, and in Chapter 2 that the waterfall model

has been blamed for many of them. In this chapter

a number of the most frequent and consequential

problems are discussed through the medium of

personal experiences.

3.1	 The Customer’s Perspective
Typically, a project manager has three goals

with respect to a project: to deliver the product to

specification, on time, and within budget (for a further

discussion of this point, see the first part of Chapter 4).

In fact, these are the three principal components of the

agreement between the customer and the supplier (or

developer) of the system, whether they are documented

or implicit. So from the customer’s point of view, these

are the three things which can (and often do) go wrong.

This sounds simple, and it is. Yet, there is one

qualification to be made. Whereas the agreement

between the customer and the supplier demands that

the system should meet its specification, the customers’

3
Lessons in Software

Development

Software
Projects

18Lessons in Software Development

project proposal was submitted by the project manager

to the Director for a project which would cost £1,000,000

and which would be completed in October of the

following year. So, we had already lost three months!

A month later, approval was given, for the project to

be completed by the coming October at a cost of half

a million pounds. Not only had the project manager

‘played the game’ very much to his own private rules,

but the Director had halved both the time (as it was

presented to him) and the cost. (I later discovered

that doing this was a principle of that Director, on the

basis that he did not trust his staff to provide him with

honest estimates!) I protested to the project manager.

He was adamant that the Director’s position precluded

challenge, that this was how things had always been,

and that we just had to live with the decision and do

what we could to meet his demand. I knew that it was

impossible, but it was my first project as development

manager and I was too inexperienced and timid to

believe that I could buck the department’s tradition.

Naturally the project was late and over budget, and

naturally it was we the developers who got the blame.

Only a couple of months into the project I became

convinced that it would have been better to let the

Director know the impossibility of his demand rather

than accede to it and be seen to fail. When the next

project came up, the same sequence of events occurred,

except that, when he halved the cost and time, I did not

carry on a futile discussion with the project manager

but wrote to the Director to let him know that his terms

could not be met. He called me to a meeting and insisted.

I pointed out that as the experts employed by him, my

staff and I had made a professional judgement and that

we stood by it. If he wanted to override this judgement,

we would naturally do our best to meet his demand, but

he would need to accept responsibility for his directive.

He seemed reluctant to accept the responsibility of

contradicting the judgement of the ‘experts’, but he

said that the project was so important that it required

an earlier completion date. I replied that if he would

authorize an increase in my staff complement, this

might be possible. He said that the current freeze on

recruitment did not permit this. I listed the projects for

which I was responsible and invited him to choose the

ones which he would permit to be late so that I could

divert development staff from them. He declined,

customers and users are seen by the developers merely

as the effects of their own problems.

3.2	 The Developers’ Problems
Traditionally, developers have seen their problems

as technical — and this has been their greatest problem.

It is now recognized that the issues which have the most

severe effects on projects are usually organizational,

administrative, and social. If the developers would

put themselves in their customers’ shoes, they would

recognize that in order to offer genuine quality,

that is to say, to meet time, budget and specification

requirements, they need to control their own problems.

This control must come from project management.

As we shall see in the next chapter and in Chapter 8,

this does not merely imply technical competence but

also, more importantly, a putting into place of the

infrastructure necessary for the smooth running of the

project.

The seeds of most of the serious problems are

sown during the early stages of a project — at the

contractual or authorization stage, in estimating and

planning, in preparing the specification, and in failing

to put an adequate project infrastructure in place. In the

following subsections, I illustrate some of the issues by

relating personal experiences.

3.2.1	 Time and Budget Inadequate — An In-
house Project

One of the most important lessons that I learned in

the management of projects was to say NO.

 Almost my first task when I became a development

manager was to provide the project manager with

estimates of cost and time for a certain proposed

development project. As there was yet no specification,

and the project manager had only an outline of what

was required, I at first declined, suggesting that a

specification should first be prepared.

‘Come on,’ said the project manager, ‘we’ve got to

play the game. We won’t hold you to the figures that

you give, but we’ve got to provide the Director with

something so that he can authorize the project.’

I played the game, and proposed that the project, as

understood, could be completed in (say) two years, with

(say) five staff, for (say) one million pounds. This was

in October of a given year. In the following January, a

19 Lessons in Software Development

Software
Projects

is not negotiable, and the development team must just

get on with the job. Then, however, the project manager

should negotiate to reduce the system’s functionality,

so that a usable system can be produced in the time

available.

In the instance under discussion, the lessons did not

end with the Director. Returning to the subject of my

first project as development manager, I also discovered

that the project manager had not acted on what he knew

to be the case when he assured me that our estimates

would only be used for making a business case and

that there would be scope for adjusting them later. I

discovered that when authorization for the project was

given, it was subject to the ‘usual’ condition that the

authorized cost and time could not be exceeded by more

that 10%. I was left with twenty months to assemble a

suitable team and develop the system — an impossible

task, given that work had not yet even begun on the

specification!

The lesson learned for future projects was to qualify

all estimates and to be careful of how they were worded.

For example, rather than say that a project could be

completed in two years, I learned to say that, ‘The

estimate for the completion of the project, given the

current information on the requirements, is two years

from the date of receipt by the development team of the

completed specification of requirements — given that

authorization to proceed with the project has already

been given.’

It was also obvious that having to make estimates

before a specification had been prepared, and almost

invariably in an extremely short time (typically one week),

was hazardous. The first remedy was to document the

limitations on the feasibility study, the most important

of which were the shortage of information on the

requirements and the limited time in which to investigate

them. Then, in providing the estimates, we showed that the

effect of these limitations was a diminution of confidence

in the estimates themselves. This led to a recognition by

senior management, as well as the customers and users,

that a brief early study without adequate information was

little more than a guess.

Our second remedy was to review our estimates when

the specification had finally been agreed. Preparing

the specification always revealed requirements which

neither we nor even the users themselves had been

saying that all the projects were important. I pointed

out that the project would therefore require the time

and budget which we had estimated. He accepted this.

The Director saw his principal means of cutting

timescales and costs as being to halve them at the time

of project authorization. He had never been challenged

on this, and to him this indicated that his theory of

overestimation by his experts was valid. (He did not

appear to have correlated the lateness and budget

excesses at the ends of his projects with his own actions

at their beginnings.) What is more, he had always

managed to act without having to accept responsibility

for the impossible project terms. Now, he did not want

to take on a responsibility which he recognized as

likely to be to his detriment later, and at the same time

he seemed to appreciate having professionals who were

prepared to support their judgement with confident

argument. My saying NO showed the Director to be

human.

It is important to distinguish between an estimate

and a target. I was responsible for making an estimate,

based on a professional understanding of the task

ahead and how it would be tackled. The Director (or any

other customer) may consider it necessary, for political

or commercial reasons, to set a target, independent of

the estimate. The project manager and developers may

be forced to attempt to achieve the target, even though

they perceive it to be unachievable, but this does not

mean that the project manager should retract his

professionally determined estimate and it should not

prevent him from documenting it for future reference.

Indeed, the more unachievable the target appears to be,

the more important it is for the project manager to do

so.

It is also crucial to distinguish between estimation

and negotiation. The estimate was the best we could

arrive at, given the available information, so I was not

prepared to change it in response to the Director’s

challenge. However, the target was negotiable, as it was

arbitrarily arrived at. A project manager should not fail

to attempt to negotiate seemingly impossible targets,

and the estimate is his main weapon in doing so. It is

therefore worth investing resources in trying to obtain

an accurate estimate. Sometimes, of course, when the

commercial or political pressure on the customer is

sufficiently strong, the target for achieving the product

Software
Projects

20Lessons in Software Development

If developers are to have a reasonable chance of

success, a serious and well-executed attempt at initial

estimation is essential. Then the project manager must

distinguish between estimates and targets and, while

standing by his estimate, be prepared to negotiate

the target. Later, the estimate should be reviewed.

One of the greatest impediments to estimating is not

systematically employing past experience. The greatest

failure is the failure to learn from the past.

3.2.2	 Time and Budget Inadequate —
A Contracted-out Project

Contracting out suggests tendering. Tendering

suggests competition for the award of the contract.

Competition suggests that tenderers seek ways of

minimizing their project price. How can tenderers

minimize their price and still guarantee a profit? It is not

unknown for them to rely for this on the near certainty of

the purchaser providing a poor specification. Knowing

that there will inevitably be a need for changes to an

inferior specification, tenderers may confidently offer a

low initial bid for the project — even one on which they

would make a loss — with the intention of levying high

charges on changes. For many years this has worked

for them. What it means, however, is that the eventual

time and cost of the project greatly exceed the initial

‘estimates’. Given the circumstances, this leads to a false

judgement of the overall success of the project.

A postscript to this, however, is a story which I heard

recently. At the end of a certain project, the software

house which had developed the system approached

the customer and asked for an added £50,000 for extra

time spent on the project. As this was unexpected and

inappropriate in a fixed-price contract, the customer

was thorough in investigating the reasons. It transpired

that the developer had deliberately tendered a low

price in order to win the contract and then, because the

customer had sought no changes to the specification

during development, had lost money on the project. It

is not impossible to do a good job on a specification of

requirements, and we need more customers who do so.

3.2.3	 The Folly of Backward Estimation
It is 10.00 am, and I’ve got a date at Victoria Station at

8.00 pm. I don’t want to be late, so I plan my journey. I will

have to change trains, and a quick calculation suggests

aware of, and the review of estimates always led to

greatly increased forecasts of cost, time and resources

for the project. We therefore began to qualify our initial

estimates with a ‘subject to final estimates when the

specification has been approved’ clause. At first this

was not appreciated by either senior management or the

customers, but when they were shown that for previous

projects the final costs and times to develop were

always considerably in excess of the original estimates,

they began to realize the wisdom of it. Gradually the

culture changed.

So here is an important factor in the software

engineering environment: culture. It is not difficult to

recognize that successful development depends on the

culture of the developers — for instance, whether they

have a ‘quality’ culture. But success also depends on the

culture of senior management — whether indeed they

are quality-conscious, or even professional, in their

attitude to development projects, and, as we shall see in

Chapter 15, on what criteria they base their judgement

of the success of a project.

Even in modern ‘software engineering’, early

estimates are relied on too heavily. Re-estimating on

the basis of the specification is carried out too seldom.

Estimates can only be as good as the information on

which they are based, and, prior to the approved

specification, information is inadequate and unreliable.

Estimation is difficult and likely to be inaccurate at

the best of times, but two things currently increase its

difficulty and accuracy. The first is that it is seldom

carried out conscientiously, and the second is the fact

that specifications change so frequently and so much.

The initial estimates should therefore be used only

to judge whether or not the project is likely to be viable.

It would be better if they were used only as a basis for

giving approval for the preparation of the specification

(see Section 9.3 of Chapter 9 for further discussion of

this). When new estimates are made on the basis of

the specification, negotiation should be carried out on

whether the various requirements are cost-effective.

In this way, senior management will possess more

reliable information on which to base their decisions,

fewer unnecessary requirements will be approved, and

fewer projects will be judged to have failed when the

real problem was inaccurate estimation in the first place

rather than inefficient development later.

21 Lessons in Software Development

Software
Projects

end, estimation and planning require simultaneous

risk assessment.

But in any given case the means of estimating must

be realistic. Working backwards from the time of my

assignation was a suitable way of both estimating

and planning my rendezvous at Victoria Station. This

was because the time available (the time between the

present and the assignation) was greater than the time

of my journey to get there. But in my first project as

development manager, discussed in Section 3.2.1 above,

I found myself with eight months in which to complete

a project which had been estimated to require twenty-

four. My staff calmly set about doing what they had

done for some time — backward ‘estimation’. This is of

course not estimation at all; it involves dividing the time

available into the stages of the project, not by allocating

the various times actually estimated for each stage, but

by proportionately allocating the available time among

the intended stages. The result is a plan which shows

the project ending at exactly the time appointed by the

Director. I could see the folly of this, but I had already

been talked into acquiescence by the project manager.

Naturally we did not complete the project according

to the plan. Indeed, when the completion date found

us still in the design stage of the project, with only an

inferior specification to work from, we did not even

have the wit to re-plan the project according to our own

professional judgement. The project manager said that

we could not risk telling the Director the whole truth,

so our new plan extended the completion date by only

six months. Thus, we re-planned a number of times,

and each time it was we, the developers, who were seen

to have failed.

It is better — no, it is vital — to report the truth as

soon as it is known.

At the time of which I speak, it required a culture

change — in the developers, the project manager, and

senior management — for the truth to be acceptable.

But, in the end, it was only the truth which set the

tone for a new culture. If the truth had continued to be

concealed, as it previously had been, there would never

have been a change.

And the moral of this tale? Distinguish between

targets and estimates. Backward estimation is not

estimation at all, but usually a futile attempt to achieve

an improbable target; use it for assignations but not for

that the journey will take about one hour. That brings me

back to 7.00 pm. Then there’s the walk to the station and

the wait to buy a ticket. Together they will take about

fifteen minutes, so I’ll need to leave home at about 6.45

pm. But suppose one of the trains is cancelled? I’d better

leave a little extra time for that. Then, suppose there’s a

bomb scare in one of the stations? This would cause the

underground network to be closed — and I wouldn’t

discover it until I arrived at the station to buy my ticket.

Just in case this happens, I’d better leave enough time to

take a bus. But then, I’d need to change buses, and the

bus will be slower than the underground, so I’d better

leave home at about 5.30 pm.

But isn’t this too early? It’s eating into all the other

things I need to do today. But then, if I’m late she may

not wait. It would be a chance missed if we didn’t meet

again, so I should do everything possible to make sure

I’m on time.

Everything possible, or everything necessary? To

do everything possible would mean considering every

eventuality and making a contingency for it. If I did

that, even now, at 10.00 am, it would already be too late

to leave home. All right then — everything necessary.

But what does that mean? If I leave any possibility

unplanned, there remains a chance that I’ll be late.

But what is the consequence of being late? I have

already said she may not wait for me. But if we are as

compatible as I seem to think, will she not have sensed

that too and be just as keen for us to meet again? If so,

will she not, if I am late, wait hoping that I will turn

up? And if this is not so, then perhaps we were not so

compatible after all. Perhaps the consequence of my

being late would be no more than a disappointment

— not great enough, in any case, to warrant elaborate

contingency plans. So, I’ll leave home at 6.45 pm as per

the original plan, and hope that the underground trains

are running normally.

At some time we must trust that ‘things’ will go

‘according to plan’. But we do so having considered

the possibilities, the risks, and the cost of putting

contingencies in place. Estimating and planning go

hand in hand. Preparing a sensible plan depends on

estimation. Estimating, as seen in the case of my journey

time, must be based on making a plan of what’s to be

done. They both require consideration of ‘everything’,

as well as an assessment of the risks involved. In the

Software
Projects

22Lessons in Software Development

greater part of estimating goes into guessing at what

figures senior management would find acceptable

and be prepared to authorize. Then there is the use of

estimating tools.

In Chapter 1, I pointed to the danger of using tools

without understanding them. I recall an instance when

someone who was managing a project sought approval

to purchase a certain estimation tool.

‘How much does it cost?’ he was asked. It turned out

that it cost a lot of money.

‘Why do we need it?’

‘In order to improve our estimating,’ he replied.

This was hardly a strong justification for the

purchase, and he was asked for the documented

estimates for the project to date.

The answer was that no such documents existed.

‘Why not?’

‘Because we’re so overworked on the project that we

have no time for estimating. That’s why we need the

tool.’

‘Then how did you arrive at the targets to which you

are now working?’

‘They were what the Director wanted.’

We had come full circle. Because of stringent business

requirements, demanding senior management, and

inexperience in estimating and planning, the project

manager had taken the option of backward estimation.

Then, in the face of criticism, and recognizing that

this was not estimating at all, his option was to find

a tool which would, with neither effort nor knowledge

on his part, provide him with estimates which would

both silence his critics and help him (miraculously) to

succeed in the project.

But it does not work like that.

‘How does the tool work?’

He only knew that it worked on a statistical basis.

The data for his project would be loaded into a database

which already contained data from numerous other

projects of many types, and statistical results would be

produced.

‘What gives you confidence that it will provide

reliable estimates for this particular project?’

Well, the tool had been highly recommended, and

that was a big influence.

But on examination of the facts, it turned out that,

while accuracy on average was claimed, in any given

software development projects.

3.2.4	 But Business Objectives May Demand
Backward Estimation!

But what about the times when business objectives

demand that a project is completed in a defined short

time? If the time is too short, how can you avoid

backward estimation?

Don’t be silly. If sensible, forward, estimation

reveals that the time available is inadequate, how can

backward estimation change this and make the project

viable? Recognizing the shortage of time is the first

step to taking control of the situation. Then there are

possibilities for action. The first is to be honest with

the customer and affirm that production of a system

to the full specification is impossible in the currently

allocated time. You might then seek authority to reduce

the functionality to that which is manageable in the

time.

Or, if the specification has not yet been produced,

a further option could be to use backward estimation

wisely — not to plan the project but to determine its

possible characteristics. For example, if experience of the

type of project in prospect has led to a knowledge of the

proportions of the total time which are typically spent

on the various project stages, it is possible to estimate

how large a project you could conduct in the time. For

instance, if you know that it requires about 30% of the

project duration to prepare a good specification, you

might seek authority to use that proportion of the time

available to capture and analyse the most important

requirements. Then, the developed product would be

sure to meet at least some of its strategic requirements,

and there would be a fair chance of it being completed

on time — not least because the project was kept small.

But whatever you do, do not be deceived into

believing that packaging time into neat segments can

provide more of it.

3.2.5	 No Estimation — and the Desire for
Estimating Tools

Frequently, ‘estimates’ of cost and time are guessed

at or derived fraudulently rather than calculated by

honest planning. Often they result from backward

estimation based on a completion date decreed by

senior management, as discussed above. Often, too, the

23 Lessons in Software Development

Software
Projects

This is often rationalized, even with the experience of

hindsight, with the comment, ‘Well, if everything had

gone according to plan, we could have met that target.’

The fact is that things seldom go according to plan.

There are numerous reasons why activities seldom take

the time that they should take, and it is as well not only

to take precautions against the problems by planning

and risk management, but also to be practical rather

than hopeful in estimating. A further relevant point is

that plans seldom contain all the necessary activities.

Time must be allowed for those which have not been

thought of but which will reveal themselves later; there

are always some of them.

A tool may be helpful. But if you are to place reliance

on a tool, it should be one which you understand, not

one which you hope can replace good judgement.

3.2.6	 So Where’s the Strategy ?
As development manager I had realized that

one reason for a project’s increasing time and cost

was its increasing size (the increase in the volume of

requirements as the project progressed). I had also

recognized that many new requirements were the result

of the appearance of new users, even late in the project.

But it took me some time to appreciate the relationship

between the appearance of new users throughout the

project and the lack of strategic planning.

Although at least some of their requirements would

have been inappropriate to the system under construction,

I had no basis for rejecting or even challenging these

new users: I had a specification of requirements for the

system, but no strategic plan from which to define the

project scope or a system boundary. The only project

definition was the specification, and this was drawn up

by the users rather than by senior management. There

was no high-level plan to which the requirements should

conform. I was unable to suggest that any new users’

requirements should not be met by this system.

To define its boundary, one must understand a

system in relation to other systems — including those

not yet built, or even designed. For this to be so, there

needs to be the conception of a number of systems at

the same time, with their interrelationships defined —

and this requires a strategic plan (see Chapter 7).

If there had been such a plan to define the terms of

reference and business objectives not only of the system

project the guarantee was only for an accuracy to

within about plus or minus 200% (beware of the word

‘average’.)

So, he might have been lucky in his project, but

he would not know if he was until the end of the

project. Meanwhile, he had no basis for optimism, a

principal reason for this being that he did not know the

assumptions on which the tool was based. The tool was

not purchased.

It is not sufficient to have statistical estimates,

particularly when it is not known what data is

contributing to the statistics. What is required in any

given instance is an estimate for this project. If you are

the project manager, the budget is your budget, and

the timescale is your timescale. You are committed

to develop the system within them, and you must

have confidence in them. The only way to get that

confidence is to carry out the estimates yourself, based

on experience: the experience of this team carrying out

this type of project using this technology. If you do

not possess evidence on all those factors, you need to

acquire what evidence exists. For example, the team may

have changed somewhat since its last project and it has

never had a project quite like this one: nevertheless, you

can find out about the team in defined circumstances,

you can find out about its leadership, and you can find

out what technologies it has expertise in. If it has no

expertise in any of the technologies to be used in the

proposed project, you know that you must allow not

only time for training but also a great deal more time

for learning by practice.

A well balanced team always contains both

experience and as yet undeveloped potential, so

the project manager needs to consider the relative

proportions in the current team before determining a

rate of production. Then there is the question of what

reliance can be placed on the specification: do we

have experience of previous specifications from this

customer?

If you estimate and get it wrong, you will have

learned from the process — and you will be able to

improve your forecasts as the project progresses.

Would your senior management approve an estimate if

you revealed that you had no idea what it was based on

and that it was accurate to plus or minus 200%?

A frequent error in estimating is to be too optimistic.

Software
Projects

24Lessons in Software Development

development — the recognition of this was mentioned

at the beginning of Chapter 2. But a specification which

is incorrect, inconsistent, ambiguous, and full of gaps

is as bad as no specification at all. Since the earliest

times, software development projects have suffered

from specification problems which range from the

total lack of a specification, through specifications of

such abominable quality that they are misleading,

to specifications which are good but which change

without proper control.

Coming to my new job of development manager, I

found not only projects in their initial stages but also

those which had been in progress for some time and

those whose developed systems had been delivered

for operation. I found myself immediately drawn into

arguments over whether the delivered systems were fit

for their purpose. The users maintained that they were

not. My staff maintained that the systems were what

the users had asked for. I proposed that reference to the

specifications would settle the matter, but I found that

there were no specifications.

The developers (my staff) were in a lose-lose situation.

Traditionally, the users did not write specifications

but called in the developers to act as systems analysts

and investigate the requirements for any proposed

system. Because they understood the users’ domain,

the developers believed that they also fully understood

the system requirements, and, in an effort to save time

for the users, pursued development without writing a

specification. As we know, change is inexorable and, even

if the specification had been perfect at the time of writing

it, the true requirements would necessarily change even

as development progressed. Inevitably, the developed

system was not what the users wanted at the time of

receiving it. Naturally the developers were blamed for

the deficiencies, and they had no way of proving that the

system was in fact what the users had asked for.

My solution was to let everyone know that we

would not commence development on a system until

a specification had been produced — and that it was

the customer’s responsibility to produce it. I thought

that this support of my staff would be appreciated by

them, but this was not the case. They argued that they

were there to help the users and that I was jeopardizing

their assistance by introducing a largely unnecessary

step. The users too were against me because they had

under construction but also of other related systems, I

could have assessed each new set of requirements against

the plan to determine which system should meet them.

Then, even if that system was not due to be operational

for a number of years, I could perhaps have kept the

changes to my project manageable by explaining to the

users how and when their requirements would be met.

In general, such a check can show that the proposed

new requirements are not valid — if, for instance, the

functions which they represented are being made

redundant by the new system, or subsumed into other

functions. As it was, there was no way for the developers

to assess this, and I had to accept the new requirements.

It would only be revealed later, when the system was

operational, whether or not we had wasted resources in

developing them.

When there is no strategic plan, a system is developed

only to meet end users’ requirements rather than

business objectives. This is bottom-up management.

Typically, this occurs when senior management is

involved in the initiation of the project only to the

extent of giving financial authorization.

On the other hand, when a project arises out

of a strategic plan, a project manager has the basis

for defining the project boundary and checking

requirements to ensure that they do not fall outside of it.

This can go a long way towards limiting the expansion

of the project once development has commenced. It also

goes a long way towards controlling the specification

of requirements, and provides a basis for validating it.

Whereas strategic planning is not a project manager’s

responsibility, it is recommended that project managers

enquire at the earliest possible opportunity about

the origins of the project. If the project has no clear

strategic foundation, the project manager will not be

able to create one, and is unlikely to be able to reject

the project, but he will have been warned. He should

then anticipate not only change to the specification but

also an increase in the size of the project, and he should

allow for this in estimating.

Ideally, a business strategist and not the project

manager should check new requirements against the

strategic plan — as discussed in Chapter 7.

3.2.7	 But What is it That You Want, Exactly ?
A specification is essential to successful

25 Lessons in Software Development

Software
Projects

not to show them up as bad authors, they seemed to

take greater pride in what they were doing, and their

authorship improved enormously.

You will no doubt have noticed that I have been

speaking of the users rather than the customer. The

fact is that in those days the senior manager who

should have been the customer was only involved to

the extent of signing the authorization for the project

budget. There were no formal business objectives, and

the scope of the project was defined only by the users’

requirements. There was bottom-up management and

no strategy (see Section 3.2.6 above).

After our improvements in specification, one

problem persisted, and this was that users’ managers

did not see it as their job, or their staff’s, to provide

information to the systems analysts. ‘My staff’s job is

maintenance, they cannot spend their time talking to

you,’ they would say. ‘Do you want a system to meet

your needs?’ I would ask. ‘Then you must let us know

your needs, and the best way to do that is to talk to us.’

The users’ managers said that their budgets did not

permit a staffing level which provided for preparing

specifications for the systems which they themselves

needed. Senior managers assured me that they would

provide sufficient staff to allow adequate participation

in their projects, but these promises never seemed

to show results. It took years before the users took a

respectable part in their own projects, and it never

reached the stage where they played an adequate part.

It is perennially a difficult problem.

Our specification standard (which also served as a

guideline) defined the form and content of specification

documents, and in the main this was a success. However,

one thing which was more a matter of culture than of

procedure, and which therefore was more difficult to

put in order, was that of defining acceptance criteria.

It was rare for there to be no dispute between users

and developers over whether a system met the users’

requirements, even when a well-written specification

existed. In many, if not most, cases, reference to the

specification did not resolve the issue because acceptance

criteria had not been thoroughly documented, or even

considered at the specification stage.

It is one thing to specify that at least 90% of all

responses by the system to a user’s command should

be within 1 second, but what about the other 10%? Even

never produced a specification, they did not know how

to prepare one, and they thought I was being dictatorial

(which I was). I was unpopular with everyone.

I was feeling my way towards improving our

development process. But I was also on a learning

curve myself: I had to learn how to introduce change.

I thought that because it was self-evident to me that

new procedures were essential and that insistence on a

specification would improve development quality, that

it would also be self-evident to my staff. I had to learn,

first, that lower-level staff with limited experience did

not necessarily understand the principles of ‘software

engineering’, and then that they had a much closer

relationship with the users than I had imagined. I

needed to introduce change by degrees, and to sell it

rather than announce it in an authoritarian manner.

I also had to accept that it was not enough for me

to remind the users that the specification was their

responsibility and then to sit back and wait for it. It would

not arrive. And if it did not arrive, there would be no

development to be carried out and no work for my staff.

If specifications were to be developed, we had to

assist the users to produce them. But there were more

problems ahead. Requirements capture is a difficult

business and the development staff were hardly more

experienced in systems analysis than the users were.

Preparing specifications requires attention to detail

and good authorship, and at first the ‘engineers’ could

see no good reason to write well. Gradually, however,

things improved. We identified a suitable method of

requirements capture and trained all the staff in its use.

We kept emphasizing the importance of the specification

stage of the project until everyone was convinced. Even

the users were converted, and we induced them to join

our teams and participate fully in requirements capture

and analysis and the documentation of specifications.

We found a specification standard and tailored it to

our needs and from then onwards all specifications

had to conform to it. We introduced Fagan’s Inspection

[Fagan 76, Redmill 88] as the means of quality control

of specifications, and we arranged training in this

not only for our own staff but also for the users. One

of the criteria of inspection was that the specification

should conform to the standard. When the authors

discovered that inspection was being used to assist

them in improving the quality of their documents and

Software
Projects

26Lessons in Software Development

•	 The commitment and calibre of middle and

junior management;

•	 The writing ability of the author of the

specification;

•	 Relationships between developers and users;

•	 Technical competence;

•	 The management of change.

Many of these topics are inter-personal and

psychological. The issue is not merely technical, but

also, importantly, whether we can get the information

on requirements to cross the gap successfully between

those who hold (or should hold) the knowledge and

those who need it. But even that is not all. Those who

should hold the information do not necessarily have

it, so the holders of the information need to be found.

Then, it is likely that they do not know that they hold

it, or that they do not find it easy to express themselves,

so ways must be found to extract the necessary

information. Then, the information which crosses the

gap is often misinterpreted by those who receive it, so

when it is documented there are errors of translation.

I do not think that I should take this brief summary

of specification problems further — the point is raised

again in Chapter 5. It is sufficient now to caution project

managers that this is the most difficult and error-

prone of all the stages of a development project. There

is no short cut: you need to have regard to the issues

listed above, train your staff, manage them well, and

pay attention to quality. If you want good quality, you

must reject bad quality. Moreover, the time to reject bad

quality is as early as possible. If you do not pay close

attention to obtaining a good specification, and then be

aware that it will change even as you strive to meet it,

look out for trouble.

3.2.8	 Who Wants the System, Anyway ?
If the senior manager responsible for the system

— and therefore the developers’ customer — and the

potential users of the system do not participate in the

development project, the changes which take place in

their organization while the project is in progress are

unlikely to be communicated to the developers.

As pointed out above, it was at first difficult to

involve the customer and users in a project. Once we,

the developers, showed ourselves to be helpful and

open in our communication with them, the users were

when there is no stated requirement, a single delayed

response can be sufficient evidence to the users that

the developers have done a bad job. Who is ‘right’ in

the ensuing argument? It is as important to define

maximum values and the variance of a distribution as

it is to specify the mean.

Gradually we moved towards a culture of specifying

acceptance criteria, but I can’t say that we ever achieved

an ideal state. Doing so requires clear and logical

thinking, a questioning attitude, and users who are not

only clear as to what they need but also who take time

both to document their requirements and to interpret

them into numerically defined criteria. None of these

essentials is common. Even when the right people come

together for a time, other forces such as promotion and

a change of job tear them apart again.

Yet, over a period of time, we steadily improved

our abilities, our approach, our relationships with our

customers and users, and our quality procedures for

requirements capture and specification, until we had in

place:

•	 Trained systems analysts;

•	 A requirements capture and analysis method;

•	 Specification teams made up of both developers

and users;

•	 A standard for specifications;

•	 A technique (Fagan’s Inspection) for the quality

control and assurance of documents;

•	 A change control procedure for specifications.

Even then, discovering what the users really wanted

was not an easy task. The fact is that capturing and

analysing requirements and preparing a specification

are the most difficult aspects of the development process.

Indeed, together they form a multi-dimensional issue. It

is multi-dimensional because it depends not merely on

the correct application of a technique but on a number

of variables, including the following:

•	 Whether there is a business strategy in place;

•	 Whether there is an information systems

strategy in place;

•	 Senior management competence, commitment

and involvement;

•	 The structure of the customer’s and users’

organization;

•	 The competence of the systems analysts;

•	 Access to the real users;

27 Lessons in Software Development

Software
Projects

the contract price. There was plenty of explanation for

this: the numerous changes had been difficult to make;

many had arrived after the design had been completed,

so the system had had not only to be re-specified but

also redesigned; further, many changes had arrived

after the software had been written, so a great deal

of work that had been done was abortive. When the

customer asked for a statement of the changes, the

developers presented a well documented list. When the

customer asked the users to check the list, it turned out

that they had not maintained a reliable record of their

requests to the developers.

When a customer has such an experience, the need

for a change control procedure is obvious — and Chapter

11 is devoted to this subject. Numerous project delays

and budget over-runs have been due to uncontrolled

change. This is not to suggest that change should not be

allowed — its inevitability has already been remarked.

But whether the project is contracted out or carried out

in-house, there needs to be a change control procedure,

and the procedure needs to be audited regularly to

ensure that it is being observed.

3.3	 Summary And Extracts
In this chapter I have related a number of personal

experiences of the problems which occur in software

development. They include estimation — carrying

it out badly or not at all and compromising it with

impossible targets — the lack of strategic planning, and

the absence of customers and users from the project.

The following are extracts which make some of the

chapter’s points.

•	 Whereas the agreement between customer

and supplier demands that the system should

meet its specification, the customer’s and users’

frequent complaint is that it does not meet their

requirements, which is almost certainly not the

same thing.

•	 What is seen as a cause from one point of view

is seen as an effect from another. One person’s

problem is the cause of another person’s

problem.

•	 The seeds of most of the serious problems are

sown during the early stages of a project —

at the contractual or authorization stage, in

estimating and planning, in preparing the

mostly interested and keen to be involved. But for a long

time their managers did not, in the main, see their way

clear to becoming involved or to facilitating the users’

participation in projects.

Senior management’s promises of greater user

involvement were not kept. Although the senior

managers could appreciate the importance of making

the users accessible to the developers, the fact was that

the users’ in-line managers had to justify their staff on

the basis of the ‘real work’. Either they did not ask for

staff to be justified on the basis of project representation,

or the senior managers did not approve it, but the fact is

that several frustrating years went by before there was

adequate user representation on the projects.

Senior managers then, as now, perceived themselves

as being too busy to participate in the management

of the development of their systems. Eventually they

compromised by appointing a middle manager to be

a ‘customer representative’ on all projects. However,

as we (the developers) became more professional,

it became more difficult for the appropriate senior

managers to avoid participation. As we identified

problems, we documented them and made requests

in writing for customer or user assistance. We were

then able to attribute project delays to delays in

receiving responses. We documented our validation

test results against the acceptance criteria and could

demonstrate that the system met its specification. Our

change procedure ensured that all changes which

had been communicated to us were documented and

visible. Gradually the cooperation from the customers

improved. By the time we began to employ evolutionary

delivery, it was good.

Greater professionalism in the developers demands

greater professionalism in the customer and users.

The customer’s and users’ roles in a project are

not confined to producing a specification. If they

are not involved throughout, the chance of failure is

significantly increased.

3.2.9	 Control Change or Fall Prey to It
The developers were all extremely helpful, and

making changes to the requirements was easy: any of

the users simply telephoned any one of three developers

and explained the change. But at the end of the contract,

the customer received a shock. The project cost twice

Software
Projects

28Lessons in Software Development

target.

•	 A frequent error in estimating is to be too

optimistic. This is often rationalized, even with

the experience of hindsight, with the comment,

‘Well, if everything had gone according to plan,

we could have met that target.’ The fact is that

things seldom go according to plan ... it is as well

to be practical rather than hopeful in estimating.

•	 If you are to place reliance on a tool, it should be

one which you understand, not one which you

hope can replace good judgement.

•	 To define its boundary, one must understand a

system in relation to other systems ... and this

requires a strategic plan

•	 When there is no strategic plan, a system is

developed only to meet end users’ requirements

rather than business objectives. This is bottom-

up management.

•	 If the project has no clear strategic foundation,

the project manager will not be able to create

one, and is unlikely to be able to reject the

project, but he will have been warned.

•	 I had to learn how to introduce change ... I

needed to introduce change by degrees, and to

sell it rather than announce it in an authoritarian

manner.

•	 Capturing and analysing requirements and

preparing a specification are the most difficult

aspects of the development process.

•	 If you want good quality, you must reject bad

quality.

•	 If you do not pay close attention to obtaining a

good specification, and then be aware that it will

change even as you strive to meet it, look out for

trouble.

specification, and in failing to put an adequate

project infrastructure in place.

•	 It is important to distinguish between an

estimate and a target.

•	 It is also crucial to distinguish between

estimation and negotiation. A project manager

should attempt to negotiate seemingly

impossible targets, and the estimate is his main

weapon in doing so.

•	 Successful development depends on the culture

of the developers ... But success also depends on

the culture of senior management — whether

they are quality-conscious, or even professional,

in their attitude to development projects, and on

what criteria they base their judgement of the

success of a project.

•	 Estimates can only be as good as the

information on which they are based, and, prior

to the approved specification, information is

inadequate and unreliable. When new estimates

are made on the basis of the specification,

negotiation should be carried out on whether

the various requirements are cost-effective. In

this way, senior management will possess more

reliable information on which to base their

decisions, fewer unnecessary requirements

will be approved, and fewer projects will be

judged to have failed when the real problem was

inaccurate estimation in the first place rather

than inefficient development later.

•	 One of the greatest impediments to estimating

is not systematically employing past experience.

•	 Backward estimation is not estimation at all, but

usually a futile attempt to achieve an improbable

29 At the Mercy of the Project

Software
Projects

I consider that the garage has done a quality job if they

provide the right make, model and colour, but deliver it

late and charge a higher price than that agreed on? No. I

decided that quality encompassed the complete service.

I reviewed my colleague’s Y diagram. I changed his

label of ‘quality’ to ‘conformity to specification’ and I

put a ‘Q’ around the Y, symbolically to show that all

three prongs are components of the quality of a project,

and not just one of them.

It is true, of course, that during the course of a project

there need to be trade-offs between the various prongs

of the Y. For example, in order to test a design, we may

need to purchase certain items of hardware earlier than

planned, thus exceeding both time and budget in the

design stage. But this should be an adjustment which is

purely internal to the project. It is the project manager’s

responsibility not to allow such internal compromises

to affect the total quality as seen by the customer at the

end of the project. In discharging this responsibility,

the project manager needs to understand the trade-offs

being made and draw up plans to show why they are

necessary, that they are temporary, and how the project

When I first came into project management, an

experienced project manager was kind enough to give

me some advice. He drew a ‘Y’ on a white board and

said that its three prongs symbolized the three goals of

a project manager: time, budget, and quality. By ‘quality’

he meant conformity to the technical specification of

requirements.

He then cautioned me that to think of achieving

the criteria of all three goals was hopelessly ambitious.

‘You’ve got to realize,’ he said, ‘that it’s always a trade

off. To achieve any one target means that you have

to compromise the other two.’ I was sceptical of this

counsel, but I had to defer to a more senior, more

experienced, and more confident project manager.

Anyway, his Y diagram was novel and therefore

persuasive.

Yet, how could ‘quality’ be independent of meeting

our time and budget targets? If inadequate estimating,

planning, coordination, or anything else has led to my

missing these targets, does meeting the specification

give me the right to claim to have done a ‘quality’ job?

I put myself in the customer’s shoes. If I order a car, do

4
At the Mercy of the

Project

Software
Projects

30At the Mercy of the Project

be ‘spared’ from other duties, or a senior programmer

on promotion or temporary promotion. In both cases

the appointee usually had no experience and little or

no training in management of any sort. Being almost

wholly technically oriented, he was only competent to

deal with purely technical problems — though he often

spent too much time resolving them himself rather

than defining and then delegating the task to others.

However, when the more insidious symptoms of

trouble within the project arose, such as lateness and

over-spend, as they almost certainly do at some time

in a project, the purely technical project manager was

more at the mercy of the project than in control of it.

In seeking the causes of problems, he concentrated

on technical issues, and, as there are always technical

improvements which can be made, he would always

find something to ‘fix’. But solving the small technical

problems would not bring the project back on course.

Being unaware of his own deficiencies in matters such

as estimating, planning, coordinating, monitoring

progress against plans, and the management of people,

he was unable to recognize the ineffectiveness of his

management of the project. He would work longer

and longer hours, find more and more minor technical

problems, resolve them with increasing frustration

and anxiety, but still not be able to reverse the adverse

trends in time and budget.

The first necessity of a software development

project is a project manager who understands project

management. Without this, the chances are stacked

against success, whatever development model is being

used.

4.2	 Project Infrastructure
Perhaps the most important aspect of project

management is the creation of the project infrastructure

(see Chapter 8). The purpose of this is not to define

what needs to be done during the project (this is the

function of planning), or how to do it (this depends on

the definition of project processes); it is to define clearly

the wherewithal for doing what needs to be done. In

this sense, the project infrastructure comprises the

following three components.

People. The project manager must determine who

should be involved in the project, identify their roles

and responsibilities, and ensure at the beginning

criteria will be met in spite of them.

Although over a period of time I came to disagree

with his basic premise of project management, I was

thankful for my senior colleague’s introduction to what

in my opinion was a flawed definition of both project

management and quality, because from the outset it set

me thinking about what it takes to manage a successful

project. If you commence a project with the notion that

it will be impossible to meet more than one of the three

agreed criteria, and that it is not even worth attempting

to do so, something is seriously wrong. You stand a

negligible chance of completing a successful project, for

you have already accepted failure. And you have not

been honest with the customer with whom you have

made the agreements which you do not believe you can

keep. In his ancient Chinese text on military strategy,

The Art of War, Sun Tzu says that the victorious warrior

wins first and then goes to war while the defeated

warrior first goes to war and then seeks to win. Beware

of starting off on the wrong foot.

The trouble is that project managers too often start off

on the wrong foot. One reason why there is something

seriously wrong with so many projects is that there is

something seriously wrong with the attitudes of their

project managers. There are many reasons for this.

4.1	 The Wrong Project Manager
In recent years it has become more common to find

‘dedicated’ project managers — that is to say, people

whose job it is to manage projects and who, having

managed one project, take on the management of

another. Such people gain experience in the job and

may attend training courses, so the chances are that

the standard of project management is, by and large,

improving.

Previously, the responsibility for a project frequently

lay entirely with an in-line manager. And frequently

such a person was unfamiliar with development projects

and glad to leave the whole business to subordinates.

Thus, ‘management’ fell to the programmers, and the

results have already been referred to in the previous

chapters.

Later, when project management had come into

vogue but was still seen almost entirely as a technical

issue, it was common to appoint as project manager

either an undistinguished junior manager who could

31 At the Mercy of the Project

Software
Projects

trail of document versions, and uncertainty as to the

project documentation. By then, the task of creating the

appropriate infrastructure is of increased difficulty, for

all existing documents must be labelled retrospectively

and a filing system for them designed. When such

things occur, a project manager may accept it as an

unexpected overhead which could not have been

avoided, not appreciating that a considerable amount of

time (which had not been planned for) could have been

saved if the document infrastructure had been created

at the initiation stage of the project.

There are often good reasons for planned activities

to be carried out later or earlier than scheduled, and

when they are, there may be a temporary loss or gain

of time, with a reasonable expectation (at least if the

project is adequately managed) that the project will

eventually be back on course. But when unplanned

activities become essential to the project, it is difficult to

recover the time or the budget spent on them. And here

lies the importance of the infrastructure: not only must

it be in place, but, importantly, it must be put in place at

the initiation stage.

Creating the project infrastructure is an important

aspect of project planning, but it is seldom considered

as such and seldom carried out effectively. Many project

problems are due to the neglect, or late implementation,

of the project infrastructure.

4.3	 Planning
Project planning is seldom carried out well, even

by the more competent project managers. One reason

for this is that our culture — certainly our culture at

work — requires us to be ‘doing’ rather than thinking,

and planning is not considered to be ‘doing’. I recall

that in my early days as a project manager, even senior

managers were impatient of planning. In fact, they were

impatient of design too, and, indeed, of everything other

than programming. ‘Stop this messing around,’ they

would say, ‘and get some real work done.’ Programming

was ‘real work’ because it was ‘doing’, and there was a

visible end product — a mountain of paper.

I remember, too, going into a certain manager’s

office. He was of the same grade in the organization

as I was. His door was closed but a little ajar, so, as I

knocked I pushed the door and entered. The manager

was leaning back in his chair, his hands were linked

of the project that each participant understands his

role and has the authority, the competence, and the

commitment to discharge it.

Group communication. The project manager must

define the teams and committees which need to

work together on the project, from a high-level

project board to the various working-level teams.

He must define the responsibilities and authority of

each group, determine the frequency of the meetings

of each group, identify the nature and details of

each meeting, define the means of communication

between people in each group and between groups

in the project, and obtain the agreement of each

person to attend all relevant meetings and discharge

all their responsibilities.

Documents. The project manager must identify the

various types of documents to be produced on

the project and devise a numbering and labelling

system, filing system, and distribution system for

each of them.

Creating the infrastructure for the project is

akin to preparing the specification for the system

to be developed. It is an essential prerequisite to

development work. If the ‘people’ and communications

infrastructures are not properly set up, there are doubts

in people’s minds as to what their responsibilities are,

and some people are not even aware that they have

responsibilities at all. Things which should be done

‘fall between the cracks’, with various persons believing

that someone else is discharging the responsibility.

When problems arise during the project, it takes a

great deal lo likely to continue to thinknger than

it should to determine who has responsibility for

them (particularly when the customer and users are

involved), to determine what action should be taken,

and to implement the action plan. It is also more likely

that inappropriate action will be taken and that further

time will be lost in reviewing the situation, drawing up

a revised action plan, and bringing the action to bear.

In the case of documents, it is not unusual to

discover in the middle of a project that a scheme needs

to be devised for distinguishing one type of document

from another and one version of a document from

another. Or, if a filing system has not been designed

and put in place, it suddenly becomes apparent that

there is no accepted set of master documents, no audit

Software
Projects

32At the Mercy of the Project

an increasing need to invest effort in coordinating the

work of the individuals and ensuring communication

between them. At a certain point, it is advantageous to

have someone whose sole job it is to do this. Let us refer

to him as the team leader.

A good team leader soon finds that effective

communication depends not on calling the team

together when it seems necessary, but on planning

and employing a project infrastructure (see Section 4.2

above and Chapter 8), so a great deal of effort is put into

this.

Then the team leader discovers that the infrastructure

does not do the work but supports him in doing it,

and that the infrastructure requires maintenance and

change.

Gradually the team leader finds that his tasks are

quite different from what they were when he was a

‘worker’. Indeed, as his project and team become larger,

it becomes clear that the activities necessary to facilitate

team and project management are as numerous and

demanding as those to carry on the development of the

product. Perhaps he needs a support team in order to

carry them out. The team leader has become a project

manager and he had learned of the difference between

product development and project management. A

project manager who recognizes the distinction

between project and product is fortunate, for it is seldom

understood or even considered by project managers.

Failure to recognize this difference is one of the

penalties for appointing a project manager of purely

technical background (see Section 4.1 above). While

the reason for the existence of the project is the need to

develop the product (and so the development process

is at the core of the project), the purpose of creating a

project is to provide an infrastructure which facilitates

the development of the product. The larger the project,

the more essential it is to have such an infrastructure,

and the greater the likely price, in over-runs of budget

and time, if it does not exist.

When I preach the importance of an infrastructure,

it is often argued that only large projects need such an

overhead, and that it is unnecessarily cumbersome and

expensive for small projects. But the principles which

apply to large projects also apply to small ones. Without

good project management, a small project is just as

together behind his head, and he was gazing at the

ceiling, apparently in thought. As he heard my knock,

he simultaneously leaned forward, brought his arms

to rest on the desk, and picked up his pen and held it

in a writing position, so that he would be seen by the

entrant (me) to be in a ‘working’ or ‘doing’ position. He

did not want to be caught thinking!

As managers of software development projects,

we need to recognize that the engineering content

of our work lies in the planning, the design, the

control. Programming is, in the main, equivalent to

the technician’s task in other engineering disciplines.

Success depends on taking time to think. As a

manager, we need to take time to plan, just as prior to

programming we need to take time to design. And not

only do project managers need to think, they also need

to allow their staff time to think. If your staff are afraid

to be caught thinking by you, something is wrong.

A second reason for planning not being well done

is that it is often inadequately defined. It is frequently

perceived only as the scheduling of events. Yet, before

scheduling can be meaningful, there is the need to

determine not only what needs to be done but also the

value of doing it and the risk of not being successful.

So planning demands not only estimation but also

judgement.

Judgement needs also to extend to recognizing

when a particular plan is no longer appropriate to the

defined goal. As seen in Chapter 2, the spiral life cycle

model emphasizes the need to review intended courses

of action, assess their risks and, if necessary, change

course. If a plan is too rigid and is seen as a mandate

rather than a means of achieving a defined goal, it can

lead to obstacles which might have been avoided by

taking a different path. The plan is a sign which points

the way to the goal, but if the indicated path becomes

blocked, it is time to revise the plan. Beware of thinking

that following it implicitly is in fact the goal. Do not

grasp at the shadow and miss the substance.

4.4 Project And Product
When a task is to be carried out by a single

individual, there are no overheads in coordination and

communication between people. As the number of

tasks increases and the size of a team grows, there is

33 At the Mercy of the Project

Software
Projects

of their progress and, in particular, of the prospect

of their failure. It is enough that they can excuse

themselves.

Are project managers any different from the majority

of us in respect of integrity? Given the above results, we

should be, and the best project managers are. But few

are ‘best’, or even very good, and in the main we are

not very different. We seem as susceptible as others to

think that our own excuses are justifiable reasons for

failure, and we accept feeble excuses from other project

participants too readily. A lack of integrity is accepted

as the norm.

Unless a project manager feels impelled to keep

his word, and recognizes that not to keep his word is

positively dishonest, he is unlikely to be successful, and

the degree of difficulty of his task will be increased.

There are so many activities within a project, and

there is such dependence between them, that failure to

meet a deadline in a small activity can have an effect

— often an unexpected effect — first on the task of

which the activity is a component, then on the stage

of the project, and finally on the project itself. It is not

sufficient for a project manager to plan a schedule

well. He must also identify the dependencies between

activities and recognize the consequence of failure

of any one of them. Then he must monitor progress

against the plans. Finally, when he finds clues that

things are not as they should be, he must take action to

make things happen. And he must keep his word and

expect the other members of the project team to keep

theirs. This is a matter of culture.

4.6	 Making Things Happen
It was April, and the resource plans showed that

the project would require expertise in the application

of a certain proprietary database from the beginning

of October. A person with the necessary expertise

would have to be recruited. As it happened, someone

in another part of the company was interested in being

transferred to the development department, and the

project manager arranged for him to commence work

on 1st October. When he arrived, it was discovered by

his team leader that he did not possess the required

expertise (which was predictable, given his previous

job). It then turned out that the project manager had

known of the deficiency but had not given any thought

likely to fail as a large one. It is simply a matter of scale.

4.5	 Integrity
In my job, I need to rely on other people a great

deal. We all do. Some time ago, I carried out a study of

the reliability of people on whom I depended. During

a period of one month, there were 24 deadlines to be

met by people who had made promises to me. These

included the delivery of documents, the provision

of information, and the making of telephone calls at

prearranged times or dates. Of the 24 promises, five

were adhered to and two telephone calls were made

to me in advance of deadlines to let me know that the

deliveries would be late.

So, there was a reliability of 5 in 24, or 20.8%. If we

consider the persons who telephoned me to have been

reliable in that they did not allow me to wait in vain for

something which would not arrive (although they were

not so reliable that they kept their original promises),

we get a figure of 7 in 24, or 29.2%.

Whereas this is the only such quantitative study

that I have conducted, I am not surprised at the result:

it seems consistent with experience. When I asked

(some of) the defaulters why they had not let me know

in advance, or at all, that they would not meet the

promised deadline, it turned out that most had not

even considered the idea. Reasons such as the pressing

urgency of other tasks were considered sufficient to

exonerate them from communicating their excuse to

someone who depended on them (their customer).

‘Good’ reasons seemed, in the main, to negate the need

for reliability, or even courtesy.

Most had good intentions: they thought that they

would be able to meet the deadline but then ran out

of time; they thought that they would be able to make

the delivery soon after the promised time (and only

be a little late). But once the date had passed and they

had failed, they continued to give priority to other

things: after all, the thing was late already; what did it

matter if it was a little later? And, frequently, they were

astonished or annoyed if I showed displeasure at their

attitude. When told the excuse, the customer should

accept it unquestioningly.

In the end, it seems that people give their word

unthinkingly, make inadequate effort to keep it, and do

not think it important to keep their customer informed

Software
Projects

34At the Mercy of the Project

famous healer. The doctor said, ‘My eldest brother

is sensitive to the spirit of sickness. As he exorcises it

before it materializes, his name is not known outside the

house. My next brother detects and eradicates disease

before the patient knows that he has it, so his name is

unknown outside of the village. I can diagnose illness

when my patients are in pain and have fever, I prescribe

medicines, massage joints, and offer prayers, and when

these are effective and my patients are relieved, they

mention my name all over the place, even as far away

as the city’.

It is the project managers who fix things which have

gone dreadfully wrong who are usually the best known.

But if you want to make things easy for yourself as a

project manager, be sensitive to the spirit of problems

before they materialize. This means not only formally

monitoring the progress of the project, but also, and

importantly, understanding people, knowing the other

project participants and talking with them regularly,

and being attuned to body language so as to detect

early signals that something is not as it should be.

If a project manager is of the third type of person

mentioned above (the one who wonders what is

happening), you cannot blame him when the project

goes wrong; it is senior management who are culpable

for appointing him as project manager. If a project

manager is of the second type, the question ‘Why?’

should be asked. Is it because he is disinterested and

should be in another job? Is it because he is intimidated

by the task, having not had experience or received

training? Again senior management need to be

monitoring the project manager’s ability, attitude and

achievement. Only if the project manager is of the first

type, and at the same time is a leader who not only gets

the best out of the other participants in the project team

but does so harmoniously, are his projects likely to be

successful.

4.7	 The Culture Of Reporting
Problems

I mentioned above that a project manager needs to

be alert to clues within the project. Ideally, all problems

should be reported immediately by whoever recognizes

them, but this is not the way of our culture, as suggested

by the following anecdote.

At the end of a certain month, a manager reported that

to arranging an appropriate training course prior to the

new recruit’s joining the project. The database supplier

was approached. Yes, they could provide the training

we needed, but not until the middle of November.

There was a two-month delay before the chap was

capable of useful work, and the project budget suffered

to the extent of his salary and other inefficiencies. Re-

scheduling reduced the project delay to two weeks.

At the end of October, the project manager carefully

explained in his monthly report to senior management

that a delay of two weeks to the project was necessitated

by the inability of the supplier to provide a training

course when it was required.

On a number of occasions, I heard various senior

managers remark on how good that project manager

was at his job. ‘He always writes a very clear report,’

one said. ‘He explains precisely why something has

gone wrong.’

If senior management’s judgement of excellence is

based on the clarity of explanation of failure rather than

on the record of success, then they are not performing

their task of monitoring the project manager. The

chances are that they will also have appointed the

wrong person for the job in the first place.

It is said that there are three types of people: those

who get up and make things happen, those who sit

back and watch things happen, and those who sit back

and wonder what the hell is happening. I should add,

however, that we are not each fixed immutably into one

of the three types; we all exhibit characteristics of each,

depending on the circumstances, on our interest in the

situation, on our confidence in ourselves and the people

around us, and so on. But the fact is that successful project

management demands a project manager who is of the

first type when it comes to project management. There

are so many things that can go wrong in a project, and

it is so easy for a small problem with a simple solution

to escalate into a disaster if it is not attended to quickly.

A project manager needs to be permanently alert to

small clues that things may not be as they should be.

Having detected such a clue, the project manager needs

to act, first to confirm the finding and then to correct

the problem before it escalates.

Here’s another story. A feudal lord in ancient China

asked his physician, who came from a well-known

family of physicians, which of his family was the most

35 At the Mercy of the Project

Software
Projects

which they cannot themselves deal with.

But it is not in our culture to report problems.

We find it easy to present glowing reports of trivial

successes, but we sweep the problems under the carpet.

As project managers, we need to try to cultivate

an attitude of not accepting problems. If the person

spotting the problem does not possess the authority, the

confidence, the resources, or the competence to solve

it, then he should report it at the earliest indication. It

should not be allowed to remain and fester. This is the

basis of quality: detecting problems early, tracing them

to their roots, eradicating them there, and so preventing

recurrence. Too often in projects the same problem

recurs because it has been ignored, or because it has

been attended to with a ‘quick fix’ which did not get to

its source.

If we are to generate a culture of problem reporting,

we as managers must be prepared to support our staff

and solve their problems. On one occasion, I was talking

to a senior manager when one of his staff came up to us.

He waited patiently until his manager attended to him,

and then said, ‘I have a problem ...’

The immediate response of his senior manager was,

‘I don’t want problems from you, I want solutions.’

Can you imagine that person seeking support from

his manager again? What in future will happen to

problems which he cannot solve? They will remain to

develop into greater problems, and the person with the

problem will become increasingly anguished because

he has nowhere to turn for assistance. His work will

suffer and he will be accused of not being ‘up to it’. When

the problem has got out of hand and is discovered, he

will be blamed for it.

4.8	 Summary And Extracts
Project management is frequently perceived as

the performance of a number of technical functions.

Planning, monitoring and reporting are usually

mentioned, and such activities as system integration

and testing are given particularly detailed coverage by

those who emphasize the development of the product

to the almost complete exclusion of the management of

the project.

This chapter has briefly reviewed a number of the

areas of project management which frequently cause

project problems. Management of the project has been

one of his projects was going to be about two weeks late.

‘Why didn’t you report this before?’

‘I didn’t know until a couple of days ago,’ he said.

So, what happened? It turned out that a team member

in one of his project teams had required a document

from a member of staff in another department. It had

been promised for a certain day, and when it did not

arrive the team member waited a week before asking

for it. He didn’t want to ‘hassle’ its provider because he

thought he might be busy. By then, of course, the task

which depended on the document was already late.

The provider of the document said that he had not had

time to write it but that he would do so the next week. It

took six weeks to arrive.

‘By the end of six weeks,’ the manager said, ‘the

lateness of the task had caused the project stage to

become so late that the whole project was affected.’

This reminded me of the cautionary tale of the

horseshoe nail. Because of the nail, the shoe was lost;

because of the shoe, the horse was lost; because of the

horse, the rider was lost; because of the rider, the battle

was lost; because of the battle, the kingdom was lost:

and all because of a horseshoe nail.

The effects of small problems may be small at first,

but they are almost certain to increase if neglected.

If the team member had insisted on getting the

document when it was due, the problem might have been

averted. If he had reported the problem early, a telephone

call from the team leader or the manager could have

resolved the situation. But the team member did not want

to ‘blow the whistle’ on the person who had let him down

because it might get him into trouble. But this is not so.

Reporting the problem would not have got the person

into trouble. No doubt he was busy. But why was he not

busy doing what he had promised to do? (See Section

4.5 above on integrity.) A call to his manager need not

have suggested that he was idling; rather it would have

asked for his priorities to be rearranged because of the

dependency of the project on his work.

What about detecting the clues? If the team leader

or the manager had detected a clue that something was

amiss, and acted on it, the situation might have been

salvaged. But given that a project manager, or any other

manager, cannot be everywhere at once, and that in

any case he will inevitably miss some clues, we need

confidence that staff will promptly report problems

Software
Projects

36At the Mercy of the Project

planning, the design, the control.

•	 Not only do project managers need to think,

they also need to allow their staff time to think.

If your staff are afraid to be caught thinking by

you, something is wrong.

•	 The plan is a sign which points the way to the

goal, but if the indicated path becomes blocked,

it is time to revise the plan. Beware of thinking

that following it implicitly is in fact the goal.

•	 While the reason for the existence of the

project is the need to develop the product, the

purpose of creating a project is to provide an

infrastructure which facilitates the development

of the product.

•	 The principles which apply to large projects

also apply to small ones. Without good project

management, a small project is just as likely to

fail as a large one. It is simply a matter of scale.

•	 	 We [project managers] seem as susceptible

as others to think that our own excuses are

justifiable reasons for failure, and we accept

feeble excuses from other project participants

too readily. A lack of integrity is accepted as the

norm.

•	 It is the project managers who fix things which

have gone dreadfully wrong who are usually the

best known. But if you want to make things easy

for yourself as a project manager, be sensitive

to the spirit of problems before they materialize.

•	 It is not in our culture to report problems. We

find it easy to present glowing reports of trivial

successes, but we sweep the problems under the

carpet.

•	 If we are to generate a culture of problem

reporting, we as managers must be prepared to

support our staff and solve their problems.

distinguished development of the product, for if the

attention of a project manager is directed entirely to the

technical aspects of product development, the project is

likely to fail.

Management is the business of identifying options

and taking decisions, of identifying problems and

planning and coordinating the implementation of their

solutions. A project manager needs to be a thinker and

coordinator rather than a technical expert — though it

is important that he understands the domain in which

he is working.

There are always technical problems. But the

problems which have the greatest impact on projects

are typically management and social issues. Above all,

a project manager can only achieve success through

other people. He must therefore have an understanding

of social interaction. He must be a leader — and

leadership involves creating and maintaining harmony

as well as getting work done.

The following extracts make some of the chapter’s

points.

•	 It is the project manager’s responsibility not to

allow internal compromises to affect the total

quality as seen by the customer at the end of

the project ... The project manager needs to

understand the trade-offs being made and draw

up plans to show why they are necessary, that

they are temporary, and how the project criteria

will be met in spite of them.

•	 Perhaps the most important aspect of project

management is the creation of the project

infrastructure. As managers of software

development projects, we need to recognize that

the engineering content of our work lies in the

37 The Waterfall Model is Dead,

Software
Projects

techniques of software development began more and

more to question the traditional development process —

represented by the waterfall model.

Linking the problems of software development — or,

in many cases, their symptoms — to the waterfall model

led a number of commentators, in the absence of any

consideration of management, to the conclusion that the

model was at fault. They believed that they had at last

(again) found the cause of the problems; again it would

only be necessary to make that certain little adjustment

for all to be well — rather like the anticipated panaceas

of perfect programming in the 1960s and software

engineering in the 1970s. In this case, that certain little

adjustment was to abandon the waterfall model and apply

a new model to software development. Actually, as we

shall see in the next chapter, the proposed adjustment was

glibly stated, not previously tested and, in fact, extremely

uncertain.

By the mid-1980s, published papers were proclaiming

that the waterfall model was the cause of the failure of

software development projects, that its time was up, and

that it was dead.

5.1	 The Waterfall Model Is Dead
It was mentioned in Chapter 1 that during the

1980s there was increasing recognition that successful

software development depended on the conduct of

a project rather than merely on correct or efficient

programming. Gradually the focus of attention shifted

away from programs and towards projects. The shift from

programmers to project managers was slower, however,

and although there was a great deal of talk about project

management, many projects lacked any defined decision-

making process. Where ‘project managers’ existed, they

often suffered from a lack of experience, training, or the

right attitude, and, frequently, all of these.

In spite of the new focus on ‘project management’,

this term was still applied mainly to technical affairs.

Indeed, the technical view of project management was

supported by books and courses which described the

details and techniques of activities such as design and

testing while omitting such management essentials as

human interaction, team building and coordination. Risk

management was seldom mentioned at all. Thinking

software developers and academics concerned with the

5
The Waterfall Model is Dead,

Long Live the Waterfall Model

Software
Projects

38The Waterfall Model is Dead,

from a trial reaches its academic proposer, the academic

has often already moved on to a new topic and does not

use the feedback to improve the theory.

In the 1980s, the theorists had not adequately

analysed either what they were decrying or what they

were proposing. In the first place, their accusations

against the waterfall model were wild, over-generalized,

and in many respects unfair. In the second place, their

proposals for the model’s replacement (with various

forms of ‘incremental’ or ‘evolutionary’ development

or delivery) were based not on experimental evidence

but only on ideas — and untested ideas at that. One

of the theorists came to give us a presentation of his

methodology, and when I questioned him afterwards,

he offered to provide us with a consulting service. I

questioned him further and discovered that it would

not be he who would do the consulting, for he was too

busy, but one of his postgraduate students. I queried the

wisdom of bringing a student to guide my staff, some

of whom were very experienced in their field, but he

brushed my doubt aside and assured me that the student

knew the methodology well. I asked about the student’s

background, and it turned out that he had entered the

postgraduate course immediately after gaining a first

degree. He may have known the methodology well,

but he had no experience (nor knowledge, I suspect)

of the context of its application: software engineering.

Beware of ‘consultants’ who wish to sell you, or train

you in, a ‘methodology’ regardless of your problem.

Such people abound, and they are likely to leave you

with an unusable tool or inapplicable knowledge, less

liquidity than you started with, and your problem still

to be considered. If you seek help, make sure that any

who purport to help you concern themselves with your

problem first and their tool second. If they show an

inclination to twist your problem into the shape of their

tool rather than the other way round, leave them alone.

To return to the waterfall model, it is not entirely

blameless. Its rigid staged approach to development

has two significant disadvantages. It implies that a

correct specification can be produced and that it will

not need to be changed throughout the project; and it

leads necessarily to the delivery of the entire system in

a single ‘big bang’. The problems inherent in these two

issues are explained below.

5.2	 A Scapegoat, Not The Cause
So an attempt was being made to discredit (and kill)

the waterfall model. There was a noble motive to this —

the abolition of software development failures — and

which of us would not be happy to think that we had

seen the last long project with an unwanted system at

its end? Yet, every week I read of foundering projects,

each with its single delivery not yet in sight, likely to

be delayed still further, and at hugely increased cost.

So the reports of the death of the waterfall model were

greatly exaggerated. The model is still alive and many

projects which follow it are still failing.

On the other hand, the waterfall model was falsely

accused and wrongly indicted of being the cause of all

of the problems. The authors of the accusations were

mistaken for three main reasons. First, because they

had not considered the role of management in a project;

second, because they had considered the waterfall

model as an absolute ‘method’ of development rather

than within its limitations as a model (see Chapter 2

for a discussion of models); and third, because they had

never tested any other means of software development

and, in at least some cases, had apparently never

developed software at all. They attributed development

problems en masse to the waterfall model; but a great

number of development failures resulted, and still

result, from the deficiencies reported in the previous

two chapters, and we can see from their descriptions

that they are independent of the development model in

use.

It is quite proper for theorists without practical

experience to propose development models or to

criticize those in use. It is not only the experience

of practitioners which identifies ‘best practice’ and

gives rise to improvements in operational models

and procedures; it is also the research and analysis of

academics. It is desirable and necessary for researchers

to make their ideas known, and it is then incumbent on

practitioners to test their theories.

But testing academic theories is not without

problems, one being that time lags are typically great:

the time between the proposal and its trial, the time

for feedback from the trial to reach the proposer, the

time for the proposer to correct the theory and adjust

the proposal in the light of the feedback, and so on.

An additional problem is that by the time the feedback

39 The Waterfall Model is Dead,

Software
Projects

correct. The idea that, ‘If I can just put this right, all will

be well’, is an illusion. Our problem is not that things

change, but that we do not accept that they must. If your

intention has been to hold things stable, recognize that

you cannot. Recognize too that implicit in the desire to

halt change within a project is a human psychological

factor which predisposes us to develop the wrong

product.

The reason for the challenge of software engineering

is change. If all were stable, software engineering, like

other jobs, would be a hum-drum activity: we would

simply follow the waterfall model and, if we got the

specification right, all would be well. But because of

the inevitability of change, the process of developing

a system is a perpetual challenge, one which calls for

attention and initiative throughout.

Things done will be undone, control which we have

achieved will be lost, and assumptions which were (or

seemed) valid will in time become invalid. Things do

not fall into place once and for all, and even when they

do fall into place, it is not long before something seems to

be askew, not necessarily because it has itself fallen out

of place, but perhaps because its relevance or context has

changed. This should leave us wanting to understand

change, to understand the risks which are implicit in

change, and to learn how to cope with, if not control,

the risks. But too often we ignore the inescapability of

change, neglect to consider its concomitant risks, and

place our faith in the coming of stability.

Development projects involve a continuous struggle

to keep up. Beware of believing that you can achieve the

perfectly smooth path, that problems are the exception

and a nuisance rather than a challenge, and that they

can be eliminated once and for all. Enter the task

knowing that there are and always will be problems,

and that your job cannot be to achieve a problemless

condition but to overcome the problems as they occur

and to meet your targets of time, budget and customer

satisfaction in spite of them.

This is not to suggest that problems cannot be

avoided. They can be foreseen and measures taken

to avoid or mitigate them, for example, by putting

a suitable project infrastructure in place during the

initiation stage of the project.

Given the inevitability of change, the implicit

assumption of the waterfall model — that a correct

5.3	 The Trouble With ‘Big Bang’
The waterfall model is a model for the development

of ‘something’ — not necessarily an entire system. It

may be used for the development of a sub-system, or,

in the case of evolutionary delivery, of a delivery (this

will be described at length in Part 2). But the product,

whatever it is, only emerges at the end of the process.

Thus, when an entire system is being developed, the

customer and users do not have the opportunity to test

or use it until it is complete.

This is perfectly normal for a product which is being

bought off the shelf. Then an individual customer,

although perhaps not contributing to the specification

of the product, at least has the chance to inspect it

before purchase and to t number of participants

commensurate with the pest it before use. But for a

computer system, for which the users may not have

clear requirements, it is a different matter. It is not until

they receive it that they can discover that it is not what

they want. And the longer the project, the greater is

the discrepancy likely to be between the users’ actual

requirements at the time of delivery and what they get.

It is rather like a tailor measuring a boy of ten and then

taking two years to make him a suit. The boy will have

grown, and however exact the measurements were

when taken, it is certain that the suit will not meet the

boy’s requirements at the time of delivery. So it is with

a system for an organization. In the first place, why

should users know exactly what they want, especially

when they have never had a computer system before? In

the second place, they, their functions, their immediate

management, their senior management, and their

organization will all have undergone changes, some of

them extensive, during the period of the project.

Thus, for large projects, there is in the waterfall

model an inherent impediment to achieving an

effective product. When there is a lack of participation

of the customer and users in the project, the problem is

exacerbated.

5.4	 The Certainty Of Change
Change forms the context within which we exist.

Nothing stands still; not only do things change, but

everything is changing all the time. The requirements

which were complete and correct (if that is ever possible)

at the time of approval are now neither complete nor

Software
Projects

40The Waterfall Model is Dead,

development models, and we need to resolve them

ourselves by understanding them and coping with them

in the management of our projects. The prerequisites to

the success of a project may therefore be said to be:

•	 Top-down business planning as the basis of the

project;

•	 Good requirements elicitation and specification;

•	 Sound project management;

•	 Sound development management;

•	 Realistic estimating;

•	 Customer and user involvement throughout the

project;

•	 Managing change and its consequential risks

throughout the project.

Given these fundamentals, there is a ‘level playing

field’ on which to compare one development model

with another. The disparagers of the waterfall model

in the 1980s had ignored management, and this is the

most crucial factor to project success.

In comparing evolutionary delivery with the

waterfall model and big-bang delivery, we need to

consider the two principal deficiencies of the latter,

and we find that evolutionary delivery can overcome

them (whether it does so in practice depends on how it

is applied and managed). It does not assume a perfect

specification to start with, and it does not deliver a

single big-bang product.

However, evolutionary delivery does not obviate

the need for good project management. As we shall

see in the next chapter and in Part 2, it throws up

new project management problems which have to

be overcome if it is to be successful. Moreover, of the

three project management goals (time, budget, and

conformity to specification), its natural tendency is to

facilitate the achievement of the third — at the expense

of the other two! In iterating towards a final product,

evolutionary delivery incorporates change into the

development process, but in doing so it opens the door

to the possibility of a perpetual project which exceeds

its original time and budget. The subject of terminating

criteria is discussed in Chapter 15.

Evolutionary delivery is not a universal panacea.

I emphasize that it does not merely fail to cope with

some of the traditional development problems; it gives

rise to new problems of its own.

specification can be prepared on which to base the

entire project — is a predisposition to the development

of a product which will not meet the needs of its users.

In many waterfall model projects, change has not been

allowed for and a number of things have gone wrong.

First, it has been assumed (often unthinkingly) that

the specification is correct to start with. But why should

it be correct? Why should preparing a specification,

which we know to be one of the most difficult tasks, be

the one thing which is done flawlessly?

Second, and this is a natural consequence of the first

issue, no change control procedure is agreed between

the customer and the developers, so when changes do

occur, they are handled inefficiently and inconsistently.

Then change is uncontrolled, it is expensive, and it

often leads to added complexity and error.

Third, too frequently there is no customer or user

presence during development. The results of this are,

first that because the users are not involved in verifying

the design, the errors in the specification which

should be corrected at that stage are not detected; and

second, that the changes in the customer’s and users’

organizations are not communicated fully, if at all, to

the developers.

The longer the project, the greater the influence of

these issues. Then, at the end of the project, even if the

developers have done a good job and produced a system

in conformity to its specification, the system will almost

certainly not meet the users’ requirements as they exist

at the time of delivery. The developers may win the

legal battle of having met the specification according

to the contract, but they lose the war of retaining the

customer’s confidence and future business.

So it is in the project manager’s interest not merely

to meet the specification but to deliver a system which

is useful to its purchaser. This means that he must

discover the changes which need to be made to the

requirements in order for them to keep up with the

customer’s changing needs. Doing so is not prescribed

in the waterfall model, but it is one of the principal

purposes and advantages of evolutionary delivery.

5.5	 Comparing Like With Like
Evolutionary delivery does not of itself solve all

the ills of software development. Many of the issues

discussed in Chapters 3 and 4 are independent of

41 The Waterfall Model is Dead,

Software
Projects

delivery to overcome them has been examined. At

the same time, the basis of the waterfall model in

sound engineering practice was noted, as well as

its appropriateness to certain types of project. The

inevitability and the challenge of change were also

discussed. The following extracts make some of the

points of the chapter.

•	 Beware of ‘consultants’ who wish to sell you,

or train you in, a ‘methodology’ regardless of

your problem. Such people are likely to leave

you with an unusable tool or inapplicable

knowledge, less liquidity than you started with,

and your problem still to be considered.

•	 For large projects, there is in the waterfall

model an inherent impediment to achieving

an effective product. When there is a lack of

participation of the customer and users in the

project, the problem is exacerbated.

•	 Our problem is not that things change, but that

we do not accept that they must. If your intention

has been to hold things stable, recognize that

you cannot.

•	 The reason for the challenge of software

engineering is change ... because of the

inevitability of change, the process of developing

a system is a perpetual challenge, one which

calls for attention and initiative throughout.

•	 The implicit assumption of the waterfall model

— that a correct specification can be prepared

on which to base the entire project — is a

predisposition to the development of a product

which will not meet the needs of its users.

•	 Why should preparing a specification, which we

know to be one of the most difficult tasks, be the

one thing which is done flawlessly?

•	 It [evolutionary delivery] does not assume a

perfect specification to start with, and it does

not deliver a single big-bang product.

•	 Of the three project management goals (time,

budget, and conformity to specification), its

[evolutionary delivery’s] natural tendency is to

facilitate the achievement of the third — at the

expense of the other two!

5.6	 Long Live The Waterfall Model
In spite of its two great disadvantages, many of

the problems for which the waterfall model has been

blamed are due to a lack of management of the software

development process rather than to the development

model in use. Project failures are our failures, and it is

we who are responsible for them.

In spite of the assertions of its demise, the waterfall

model lives on. As we saw in Chapter 2, it represents a

natural order of events. It is still the basis of the majority

of development projects (many of which still go wrong).

Even when a process such as evolutionary delivery is

employed, the waterfall model still plays a prominent

part, for each delivery needs to be specified, designed,

built, validated, and delivered — in that order. Indeed,

each delivery is a project (call it a mini-project if you

like) in its own right, one for which the waterfall model

is used. Making a delivery on time depends, therefore,

not on avoiding the waterfall model but on avoiding

or dealing satisfactorily with the problems outlined in

Chapters 3 and 4.

As we shall see in Part 2, evolutionary delivery

incurs significant overheads, and the waterfall model

(which includes the V model, as discussed in Chapter

2) is likely to produce a cheaper and quicker solution,

given that:

•	 The project is relatively short (less than one year

of elapsed time);

•	 There is a good specification to begin with;

•	 The scope of the project is well understood;

•	 There is a defined change control procedure;

•	 The project risks have been assessed and are

considered to be low;

•	 The customer and users are involved in the

project.

In gaining confidence in the specification it may be

wise to use prototyping in the early stages of the project.

But the waterfall model lives on, and will continue to do

so, for it represents basic engineering practice.

5.7	 Summary And Extracts
This chapter has considered the suggestion that the

waterfall model is obsolete. The model’s deficiencies

have been identified and the potential of evolutionary

Software
Projects

42Enter Evolutionary Delivery

however, revealed that with the resources available

it would not be possible to achieve this target — or

anything like it. Indeed, the evidence suggested that

about five years would be required. But the systems

were strategic imperatives, and business targets were

uninfluenced by our estimates. We started work on the

detailed specifications.

Systems analysis confirmed the conclusions of the

feasibility studies. Indeed, it revealed that when the two

systems had been developed to the specifications then

being documented they would need to be extended to

provide further functions and to be integrated with

other systems not yet planned.

There was no way in which the two systems could

be provided within two years, even if our resources

were greatly increased. Nevertheless, we completed the

specifications, planned the development projects, and

commenced the design. By then more than a year had

passed, and we were left with a mere nine months in

which to carry out two large projects. Impossible. We

were caught in the perennial developers’ trap described

in Chapter 3 — being expected to meet unrealistic

6.1	 We Go For It — Or Get Pushed
Summarizing the discussion of earlier chapters, the

situation was like this: continuing problems in software

development led to condemnation of the waterfall

model. ‘The waterfall model is dead,’ said its critics. I

did not accept the finality of this assertion, nor did I

believe that the accusations against the model were all

fair, but I did not have to look far to see that software

development was not under control, that the products of

software development had a reputation for poor quality

and did not satisfy the customers, and that things did

not seem to be improving.

As seen in the previous chapter, an inherent aspect

of the waterfall model is big-bang delivery, and this is

a significant contributor to the problem of delivered

systems not being what their users want. In the light

of this and other software development problems, we

were pondering when and how to try an evolutionary

method when something happened which escalated

the decision. We were called on to carry out two large

development projects, with business objectives for

both to be completed in two years. Feasibility studies,

6
Enter Evolutionary Delivery

With its own problems

43 Enter Evolutionary Delivery

Software
Projects

of its difficulties.

The problems thrown up by ED are briefly introduced

in this chapter and are the subject of Part 2 of the book.

The main purpose is to draw them to the attention of

developers and so avert the inefficiency of their having

to discover them for themselves. Often, identifying and

defining a problem is more difficult that devising a

solution, so in many instances a resolution may become

apparent to the reader simply as a result of being made

aware of the problem. The solutions which I propose

are based on those which we developed (or evolved) to

meet our needs as the problems became apparent, and

in some cases extended as a result of later experience.

They are, in the main, generally applicable to ED. At the

same time, a solution must fit its context, so developers

may wish to refine those proposed here in order to

make them appropriate to their own circumstances.

6.2	 What Is Evolutionary Delivery?
6.2.1	 Evolution

Evolutionary delivery, as considered in this book,

is the provision of the functionality of a system in a

number of deliveries over a period of time. The system

does not merely grow with each delivery, for each

delivery is not simply a new increment to be added to

the existing system but a new version of the system.

A version may change from its predecessor in one or

more of several respects. The first type of change to

the existing system is the addition of functions as per

the original specification. The second type is change

to what has already been delivered as the result of

use and assessment. The third type consists of new

requirements which emerge as the result of the users

now being better placed to consider what they want

from the system and how the system could best aid

them. In this sense, deliveries perform the same

function as prototypes, with changes arising as the

result of feedback from users and other members of

the customer’s organization. The fourth type of change

consists of corrective maintenance.

With each delivery, the system evolves, not only in

size but also towards its full functionality.

6.2.2	 Delivery
Feedback is an engineering necessity. Indeed, it is

a fundamental requirement in all aspects of life. For

timescales and likely to be blamed for failing to do so.

Using the traditional (waterfall model) development

process, we could not expect to meet the specifications

even within three years — more than two years late.

What could we do? The time had come for us to use

an evolutionary approach. This, we thought, would

allow us to install a part of each system in the nine

months which remained of the initial two years, thus

salvaging something of our honour. But it did not work

out quite as neatly as that. We soon realized that before

commencing development, we needed to replan the

work. In the event, we managed to get the hardware

and the first software increment into service two and a

half years into the project — six months late, according

to the objectives. Given the original omens, this was

not a bad start. Indeed, astonishingly, we were seen

by some to be successful when that first (and very

limited) version of the system went live. But we could

have planned it better, and there were many problems

ahead. We had a lot to learn.

The academic papers advising us to depart from the

waterfall model were theoretical. It is doubtful if any

of their authors had had any practical experience of

the methods which they advocated, and without that

experience they could not alert us to the fact that there

were problems inherent in evolutionary delivery (ED).

ED does not simply fail to overcome the obstacles erected

by big bang, or those discussed in Chapters 3 and 4; the

fact is that it introduces new problems of its own.

When we came to apply ED to our projects, we were

unaware that it would take us many experiences and a

long learning period before we could claim to employ it

effectively. Naturally, we discovered the problems, and

reported on them [Redmill 89]. And naturally we lost

time in having to solve them — and then re-solve them

or refine the solutions. The result is this book, which

is intended to alert developers who employ ED of the

dangers ahead.

I should emphasize, however, that documenting

its problems does not imply condemnation of ED. I

am in favour of it; I recommend it — except in short

projects. Its advantages are valid, but it needs to be

well managed. If it is not, it can (and almost certainly

will) become confused, uncontrolled, and very costly.

Advantages seldom come without difficulties. Gain has

its cost. So my writing is to promote an understanding

Software
Projects

44Enter Evolutionary Delivery

keep the product being developed in line with what the

users require at the time of development rather than

with what they thought they required at the time of

preparing a specification.

This feedback, this demand for change, needs to be

controlled. If it is not, the door is opened to a project

of unlimited temporal and budgetary demands. But

feedback to the developers as a result of experience of

the system is the first and main advantage of ED.

6.3.2	 An Early Working System
ED provides the customer and users with a working

system much earlier than otherwise. As well as the

users putting the system to the test and providing

feedback to improve it, the customer and users can and

should derive benefit from its use. Indeed, if useful

feedback is to be derived from the users’ experience of

the system, they need to put it to use — so they need to

find it useful.

At first, there is a limited number of functions.

However, if planning is sensible, the usefulness of the

system can be optimized by prioritizing the functions

in order of their benefit to the customer or users and

developing at each delivery those functions of highest

priority. This is not always possible, as other practical

issues affect the planning of deliveries (see Chapters

9 and 12), but it is a principle which should inform

planning and which gives rise to a significant advantage

of ED.

6.3.3	 Customer Confidence
A perennial problem for software developers is that

they find it almost impossible to attract the confidence

of customers and users. First of all, during the project

it seems to the customer and users that the system

will never be completed. Then, when it is finally

delivered, they find that it does not meet their current

requirements.

During the project, the customer is (ideally) involved

in the planning and therefore recognizes the steps

along the way, but frequently the users are not aware of

the project details and only see a long delay in meeting

their needs. Then, even though the customer and

users may be largely to blame for many of the delays,

this does not much influence their attitude towards

the developers. Indeed, a recognition of their own

example, in driving a car we use feedback received by

our visual and audio senses, as well as that received via

our sense of touch, to determine the extent to which the

vehicle is under our control.

The principal problem with big-bang delivery,

particularly when it is compounded by the self-imposed

difficulty of a lack of contact with the proposed system

users, is that the effectiveness of the system is not tested

by its users until the entire system has been built and

delivered, so there is no feedback to the developers.

The principal advantage of ED is that it allows feedback

from users from an early stage of development. What

promotes customer and user feedback and, therefore,

leads (ideally) to a more effective system, is early

delivery rather than the evolution of development.

Indeed, all development is evolutionary!

It is thus delivery of the system while it is still being

developed, and the changes to it which result from the

users’ feedback, which distinguishes ED from the big

bang.

6.3	 Advantages Of Evolutionary
Delivery

It is possible to speculate on many advantages which

ED might, in theory, offer. The following are those

which experience verified.

6.3.1	 Early Feedback
As discussed in earlier chapters, a correct (and thus

complete) specification is almost impossible to achieve.

Further, even if it were achieved, it would not be either

correct or complete for long because of the many

changes taking place in the personnel, management,

objectives, and ways of working in the customer’s and

users’ organizations. Thus, successful development

does not depend on producing a system which meets

a ‘frozen’ specification, but also on identifying and

understanding the changes to those requirements as

they arise (during the course of the project).

Making an early delivery of a functional and useful

part of the system offers its users an opportunity

to assess what has been delivered, to discover how

it responds to their commands and how it presents

information, and to reappraise their requirements on

the system. Feedback to the developers as a result of

experience of the system is a control mechanism to

45 Enter Evolutionary Delivery

Software
Projects

previous chapter that of the three project problems as

seen from the customer’s point of view (over-budget,

over-time, and not what is required), the only one

whose solution is inherent in ED is the third. If we are to

address the other two issues, we must start by putting

in place those mechanisms which we have learnt are

necessary for avoiding hazardous development — such

as good project management (including a sound project

infrastructure), strategic planning, and communication

between the developers and the customer and users.

If the problems of ED were simply those traditionally

associated with software development projects, there

would be no need for Part 2 of this book, for they have

already been discussed in Chapters 3 and 4. But the

fact is that ED throws up problems of its own. In the

following brief introductions to them, a number of

issues are grouped under common headings. There

is considerable interrelationship between the various

issues, and any one could be classified under a number

of headings. Indeed, if examined from different

viewpoints, different groupings, with such titles

as ‘Budget Management’, ‘Strategy’, and ‘Customer

Involvement’, could have been formed. In the end,

however, they all come under the general heading of

controlling, or managing, the process, which is to say:

‘Project Management’.

6.4.1	 Initial Planning
(a)	 Specification. Because development is to be

incremental and delivery evolutionary, customers and

users are tempted to specify only the initial delivery

at the beginning of the project, believing that other

deliveries can be specified at their leisure. But without

a good initial specification, system design would

suffer and the ease with which it can be modified

would be compromised. Further, lack of an adequate

specification precludes accurate estimation of resource

and time requirements — and estimating is crucial to

the allocation of a budget, to project authorization, and

to the control of the project. This subject is considered

in detail in Chapter 9.

(b)	 Development System. In a big-bang project, it is

not unusual for the expense of a separate development

system to be avoided, with the target hardware and

system software being used for development. In an ED

project, continued development after the first delivery

culpability often stiffens their defence of themselves;

why didn’t the developers, knowing how busy they

were, or knowing their inexperience in these matters,

do something to help them? To make a bad situation

worse, when the system fails to meet the users’ current

requirements, the fact that it meets its specification does

not impress them.

With ED, the first delivery does impress the users.

They did not expect it so soon. They did not expect it

to work. So they are pleased to have it. The interface is

not as they would like it; there are too few functions;

they can immediately see where changes are needed;

but a system has been delivered, and if the developers

display a willingness to improve what they find

unsatisfactory, the users are indeed impressed. Their

experiences of previous development projects were of

long waits aggravated by implausible or unacceptable

excuses, and then unsuitable systems and longer waits

while the problems were rectified (if they ever were).

These developers aren’t so bad!

Achieving customer and user approbation by the

developers is a significant bonus of ED.

6.3.4	 Development Team Morale
We all seek achievement. When the developers

make the first delivery, and each subsequent one,

they achieve something and their morale is raised.

To find that they are not despised or resented but, on

the contrary, appreciated by the users — and even by

the customer — is a further boost to their self esteem.

They work harder and are more effective in their work.

The psychological ‘strokes’ generated by their own

achievement and the appreciation of the users lead to

increased morale, effort and effectiveness.

6.4	 A Summary Of The Problems
Created By Evolutionary Delivery

ED is not a solution in itself. It points the way to

improved effectiveness of the product, but the efficiency

with which we achieve this, or indeed whether we

achieve it at all, depends on applying the best planning

and management principles. Without them, ED is a

recipe for an infinite project.

ED is not immune to the problems traditionally

associated with software development (outlined in

Chapters 3 and 4). Indeed, it was pointed out in the

Software
Projects

46Enter Evolutionary Delivery

Typically, a project is seen as the means of meeting a

specification; and, given the big-bang tradition, this

may allow for no more than a 10% deviation in budget

from the authorized figure. Can such a constraint be

made to cover the case of a changing specification?

Should it? Budget control in an ED project is not

trivial. Developers need separately to record the

time and other resources devoted to the original

specification, to changes, and to maintenance. See

Chapter 15 for a discussion of these issues.

6.4.3	 Planning Deliveries
(a)	Frequency of Deliveries. The development of a

delivery is a project in itself, and it carries with it

the overheads of a project. Planning and preparing

a delivery is time-consuming (see Chapter 12). Too

high a frequency of deliveries takes too much effort

away from development. Further, the rate of delivery

is restricted by the time it takes to test the system

(see Section 6.4.5 below and Chapter 13).

(b)	Prioritizing Functions. An advantage of early

delivery is getting crucial functions into service. If

non-essential parts of the system are delivered to

the exclusion of important functions, this advantage

is lost. With changes being made to the specification

and to earlier plans as a result of feedback, constant

re-prioritization of work is necessary. This is non-

trivial and is an added overhead in the planning of

every delivery. It is the subject of Chapter 12.

(c)	 Customer Involvement in Planning. If re-

prioritization is to achieve its aim, the customer

must be involved in planning deliveries. This is

often not easy to achieve.

(d)	Changing Plans. Typically a delivery consists of a

mixture of work defined in the original specification

and new work resulting from feedback. As

mentioned above, plans are therefore always

subject to change. Procedures need to be in place

for replanning during the development of every

delivery (see Chapter 12).

6.4.4	 Configuration Management
Control of ED depends in great measure on a good

configuration management system. In a waterfall model

project, in which only one version of the system is being

developed, configuration management is crucial. In ED,

depends on the availability of a development system,

which needs to be planned and budgeted for at the

initiation of the project. This can add substantially to

the project cost.

6.4.2	 Control of Change
(a)	Procedures. ED invites change. The purpose of

ED is to receive early feedback and use it to refine

the evolving product so that it meets business

objectives and users’ requirements earlier than

would have been the case with big bang. Yet,

change needs to be controlled. The tendency is for

users, having experienced the system, to request

numerous changes, many of them trivial. While it is

important to optimize the system for user efficiency,

implementing all requested changes can preclude the

development intended to meet business objectives;

it can also be non-cost-effective. A balance must be

struck. Procedures for all stages of the process of

submitting, vetting and authorizing requests for

change need to be developed and adhered to (see

Chapter 11 for a detailed procedure).

(b)	Requests for Change. The inclination of developers

to implement changes at the verbal request of users

must be curbed. Only documented and authorized

changes should be implemented. ED is not the

same as rapid application development. The latter

is appropriate to short projects for the development

of user-based rather than strategically-based

systems; the former is appropriate to longer projects.

Moreover, rapid application development does

not involve the concurrent management of several

versions of the system; evolutionary delivery does,

and will become confused and inefficient unless its

processes are methodical and carefully controlled.

(c)	 Strategic Concurrence. A system whose specification

initially meets business objectives and strategic plans

can, as the result of numerous changes, eventually

meet none of them and only satisfy the end users’

requirements. Given the volume of requests for

change which may arise in an ED project, the

chance of this happening is increased. Included

in the change control procedures, there needs to

be a process for vetting proposed changes against

business strategy. This is explained in Chapter 11.

(d)	Budget. A major problem is project definition.

47 Enter Evolutionary Delivery

Software
Projects

revalidate the system. The suggestion that we can

make ‘a delivery per week’ is therefore glib and

impractical if sound engineering practice is to be

followed.

(d)	Acceptance Testing. There is a temptation for users

to perceive only the first delivery (which may be no

more than 10% of the final system) as the system

to be accepted, and they may regard subsequent

deliveries merely as changes to an existing system.

Customers and users need to develop a new culture

to deal with ED (see Chapter 15 for a discussion

of this), with each delivery being recognized as a

system to undergo acceptance testing. All approved

requests for change should include measurable

attributes and acceptance test criteria.

6.4.6	 Maintenance
If the traditional definition of software maintenance

(all work carried out after delivery of the system) is applied

to ED, all development after the first delivery would be

maintenance. Given that only a small proportion of the

software is installed in the first delivery, this would

lead to the majority of development being classified

as maintenance. In ED, only corrective work should be

considered as maintenance, and records should be kept

of new development, redevelopment (change to what

has already been done), and maintenance (corrections

due to a failure of the system to meet its specification)

so that the effort invested in each can be accounted for.

Maintenance is the subject of Chapter 14.

6.4.7	 Philosophy and Culture
(a)	Management Attitude. While the developers

quickly evolve their techniques and thinking to

cope effectively with ED, the rest of the business,

particularly senior management, are likely to

continue to think in terms of big-bang projects.

They are likely to judge progress not in terms of the

effectiveness of the functions already delivered and

the gains achieved by early delivery, but in terms

of the originally estimated budget and completion

date. A new culture is required for ED (see Chapter

15), and it may need to be the development manager

or the project manager who sets out to engender it.

However, while it is evolving (if it evolves), records

of the work done as a result of feedback, change and

it is even more important: once the first delivery has

been made, a number of versions of the system are in

existence, with at least two and probably three being

under development at any time.

It may be expected that at least four versions of the

target system software are at various stages of operation

and development. In a large project, when development

has been proceeding for some time, there are also likely

to be a number of historic versions to be accounted for. To

make the configuration management system effective,

not only must rules and procedures for its operation be

created, but as these on their own cannot provide a total

solution, a management system for controlling it must

also be put in place. Smooth operation always depends

to some extent on individuals. Leadership to inspire

motivation is important.

A configuration management system appropriate to

ED is the subject of Chapter 10.

6.4.5	 Testing
(a)	Revalidation. Ideally, revalidation of the system

prior to a new delivery should be carried out under

operational conditions. However, once the users have

an operational system, they do not want it taken out

of service for perhaps lengthy testing. Carrying out

revalidation on the development system is convenient

to users, but it may compromise confidence in the

tests. The continued availability of the operational

system for revalidation versus confidence in the test

results is a trade-off which needs to be considered

in contracting with the customer and planning with

the users. Validation and other aspects of testing in

an ED project are the subject of Chapter 13.

(b)	What is Validated? As the operational system

grows, so revalidation time increases. Thorough

revalidation requires that the total system is tested,

including those functions already in operation. For

a non-critical system, a compromise may be made

by only carrying out selective tests — perhaps

only on new functions and those which have been

changed. For a critical system, full revalidation may

be necessary, and for a large system this can require

considerable time. Compromises may need to be

made, and these must be agreed with the customer.

(c)	 Frequency of Deliveries. The interval between

deliveries cannot be shorter than the time to

Software
Projects

48Enter Evolutionary Delivery

we were unaware that it would take us many

experiences and a long learning period before

we could claim to employ it effectively ... we

discovered the problems, and we lost time in

having to solve them — and then re-solve them

or refine the solutions.

•	 It is delivery of the system while it is still being

developed, and the changes to it which result

from the users’ feedback, which distinguishes

ED from the big bang.

•	 The usefulness of the system can be optimized

by prioritizing the functions and developing at

each delivery those of highest priority.

•	 During the project, the customer is (ideally)

involved in the planning, but frequently the

users are not aware of the project details and

only see a long delay in meeting their needs.

•	 When the developers make the first delivery,

and each subsequent one ... the psychological

‘strokes’ generated by their own achievement

and the appreciation of the users lead to

increased morale, effort and effectiveness.

•	 ED is not a solution in itself. It points the way

to improved effectiveness of the product, but

the efficiency with which we achieve this, or

indeed whether we achieve it at all, depends on

applying the best planning and management

principles.

•	 Without a good initial specification, system

design would suffer and the ease with which

it can be modified would be compromised.

Further, lack of an adequate specification

precludes accurate estimation of resource and

time requirements.

•	 In an ED project, continued development after

the first delivery depends on the availability of

a development system.

•	 A system whose specification initially meets

business objectives and strategic plans can, as

the result of numerous changes, eventually

meet none of them and only satisfy the end

users’ requirements.

•	 Too high a frequency of deliveries takes too

much effort away from development. Further,

the rate of delivery is restricted by the time it

takes to test the system.

re-prioritization need to be kept — otherwise, when

success is judged against traditional criteria, the

developers will be seen in a poor light.

(b)	Budget. If senior management are accustomed to

think in terms of waterfall model projects, they are

likely to demand that the project budget should

remain within 10% of its original estimate. It takes

a new management attitude to allow a fluid budget

for a project. At the same time, however, even the

advantages of early change do not justify unlimited

expenditure. Whereas management need to adjust

their thinking to get the best from ED, the developers

need to plan their projects with an eye on the cost

of change. Their proposed budget should include

change, and they should be prepared to be held to it.

6.5	 Summary And Extracts
Evolutionary delivery increases project and process

complexity over that of big bang. To get the best from

ED, to operate it efficiently, to achieve effectiveness,

and to avoid being swamped by change, project

management of a high order is required and a number

of new problems need to be understood and overcome.

The effectiveness of the product depends on a strategic

plan to start with, strategic involvement throughout,

and a great deal of tactical planning and replanning

during the project. New criteria for terminating the

project and for judging its success are needed.

The recognition and understanding of many

of the issues introduced in this chapter lead fairly

readily to ideas for solutions. For others, a great deal

of thought and pragmatism are called for. In all cases,

an understanding of technical and theoretical solutions

is not enough: setting up procedures, managing them

effectively, and evolving and improving them are

essential components of success, as are setting the

right goals, understanding the processes, ensuring

the necessary training, and maintaining the resolve

to manage considerable change. The issues described

above, and the ways in which they may be tackled, form

the basis of the subsequent chapters in this book, and

pointers to the appropriate chapters are included in the

above text.

 The following extracts make some of the points of

the chapter.

•	 When we came to apply ED to our projects,

49 Enter Evolutionary Delivery

Software
Projects

•	 If the traditional definition of software

maintenance (all work carried out after delivery

of the system) is applied to ED, all development

after the first delivery would be maintenance ...

In ED, only corrective work should be considered

as maintenance.

•	 Whereas management need to adjust their

thinking to get the best from ED, the developers

need to plan their projects with an eye on the

cost of change.

•	 Once the first delivery has been made, a number

of versions of the system are in existence, with

at least two and probably three being under

development at any time.

•	 To make the configuration management system

effective, not only must rules and procedures

for its operation be created, but as these on

their own cannot provide a total solution, a

management system for controlling it must also

be put in place.

•	 Customers and users need to develop a new

culture to deal with ED

Software
Projects

50

Two
The Path Through

Evolutionary Delivery

51 The Importance of Strategy

Software
Projects

requirements, even when development was already

far advanced. New users kept turning up with new

requirements. If there had been a strategic plan, it would

have defined the boundary, or scope, of the system,

and this would have provided a basis for determining

whether the new users’ needs should be met by this

system, by some other, or perhaps not at all. In the first

place it would have assisted in identifying the future

users of the system, and in the second place it would

have provided me with the basis of declining to accept

requirements which were inappropriate to the system.

In the event, the only available definition of the system’s

scope was that which I was able to derive from the

specification of the users’ requirements, and as these

changed so did the system’s boundary.

In summary, the system’s boundary could not be

used as a means of identifying the users or controlling

their requirements because it was defined only by the

users themselves, and it changed as they redefined

themselves. We had a recipe for an indefinite project. It

was inevitable that the time and budget planned for the

project would be exceeded, that the developers would

7.1	 The Issues
In many companies, perhaps in most, information

system planning does not descend from a business

strategy. Indeed, in many companies, there is no

obvious business strategy at all.

Frequently, systematic planning of information

systems does not occur at all, the need for a system being

first stated not in a strategic assessment of the company’s

needs, but by the users or potential users of the proposed

system. From this ‘bottom-up management’, the scope

of the system to be developed is not defined by a plan

which places constraints on it, but only by a specification

of requirements, which may expand and otherwise

change at the whim of intended users of the proposed

system. The fact is that clear strategic plans are seldom

drawn up at the most senior levels of a business, and

even when they are, they are not used as the basis of

lower-level planning and determining the organization’s

information system needs.

As a project manager, I was forced to recognize

the importance of strategic planning when I found

myself unable to control change to a specification of

7
The Importance of

Strategy

Software
Projects

52The Importance of Strategy

There are two purposes to this chapter. The first

is to advise project managers, senior managers,

customers, and all who are involved in management

and in projects, on how and why a strategic basis is

important to a project. The second purpose is to offer a

brief overview of the steps in the strategic planning of

information systems.

7.2	 Strategic Planning
Strategy suggests a certain clarity of intention, a

definition and understanding of the goal to be aimed

at, and a statement of the direction to be taken in

attempting to attain it. A business strategy provides

a definition of the organization’s goals, such as its

products and its markets. Strategic planning, derived

from the business strategy, should then define the

achievements to be striven for by the departments of

the organization and their managers, and indicate

the directions to be followed and, importantly, the

constraints on what is to be done and how it is to be

done.

Like every plan, strategy must be dynamic. It should

not be (and is sure to be counter-productive if it is

defined as) a rigid blueprint for the indefinite future.

It should be reviewed periodically and when a change

in the organization’s direction is indicated, such as

when a competitor is about to introduce a new product.

But while it is in force, the constraints imposed by a

strategy should be observed, though they should not be

seen as definitively blocking all changes of direction. If

a manager is taking, or wishes to take, a course outside

the strategy, either that course should be abandoned or

the strategy should be reviewed. To take such a course in

the face of the organization’s strategy is economic waste

(given that the strategy has been properly devised).

Determining the details of the course to be taken

requires further planning, for a strategy is typically brief,

defining goals but not every step of the way. Strategic

planning requires input from the organization’s

strategy department (if one exists) and from its senior

and middle managers. The senior strategists should

have a clear perception of both the strategy and its

interpretation in the context of each department, and

the organization’s managers should understand the

details of the strategic goals, the technologies, methods

and tools necessary for achieving them, and the options

become dispirited by persistent and uncontrolled

change, and that the system would almost certainly not

meet the business’ strategic needs, whatever they might

be.

Although a project manager’s terms of reference do

not normally include strategic planning, it is crucial

that he understands its importance to the success of

a project. With such understanding he will certainly

enquire, at the very beginning of the project, into the

source of the proposal for the system. If the source

is shown to be a top-down strategic plan, the project

manager may reasonably expect to be able to define

the project boundary with some clarity. There is no

guarantee that this will not change, but at least it gives

the project a clear definition, and this is a good —

indeed a necessary — starting point. It is also a point of

reference against which to evaluate proposed changes

and to judge the claims of self-defined new users.

If, on the other hand, it turns out that the proposal

for the system arose only out of users’ requirements,

and that it is not defined or supported by a strategic

plan, the astute project manager will certainly sense

danger. He will know that the scope of the project can

at best be ill-defined, that there is a greater likelihood of

change to the requirements, that he will have no basis

for challenging the proposed changes, and that he will

experience greater difficulty in controlling them. He

may not have the option of declining to manage the

project, but he should certainly inform the customer

and his own senior management of his reservations

and anticipated difficulties, and he should make

allowance for them in his time and budget estimates for

the project. He should also assess the risks which the

uncertainty throws up, document them, discuss them

with the customer, and take steps to mitigate them (see

[Redmill 97]).

In ED, a prime intention is to invite change to the

system so far developed so as persistently to tailor it to

meet the customer’s and users’ real needs. But changes

should not be implemented unless they fall within the

defined scope of the project and have been vetted and

approved by the customer. Not to apply these criteria

is to run a serious risk of losing control of the project.

Strategic planning and the resulting definition of the

project boundary and scope are of increased importance

in ED projects.

53 The Importance of Strategy

Software
Projects

expensive or more difficult than others, some offer

tactical advantages on the way, and some do not.

Some offer longer-term advantage and some may

offer short-term gain. The longer-term benefits may

depend on employing technology which we are

not yet ready for, and we may be better off taking

a different route in the short term and gradually

developing the skills and confidence necessary

for later strategic positioning. Computer systems

are usually support mechanisms on a strategic

path rather than strategic goals (i.e., the means of

providing a service and not the service itself). In

planning the route one needs to recognise that it

must start from where we are now.

As strategic planning is carried out, it begins to

become clear what computing needs the organization

will have over a defined period of time. The next step is

then to convert the statement of computing needs into a

plan for specific computer systems.

7.3	 Information Systems Planning
If each system is defined independently of all others,

an organization is almost certain to end up with: a

miscellany of systems which do not communicate with

each other, the inefficient use of data, uncoordinated

maintenance, and significant over-staffing. It is not

uncommon for such deficiencies to become apparent

during a development project, giving rise to changes

in requirements and the resulting increased costs to

the customer and difficulties for the project manager

and development team. It is therefore important to a

project manager not only that the need for a system

has been derived from strategic thinking, but also that

the requirements on the system have been founded on

coordinated information systems planning.

Coordinated systems planning implies assessing an

organization’s total data and information requirements

and integrating them into a ‘grand plan’. The alternative

is for small sections of the organization to identify the

requirements on specific systems, but this leads to

the lack of coordination of systems referred to above.

Data and information planning should precede system

planning.

Within the scope of an organization’s overall needs,

a systems plan, or architecture, may be produced,

not for a single information system but (ideally) for

available and the decisions to be taken along the way.

Too often, however, there is no concept of strategic

planning within an organization. To be fair, the need

for it is frequently not apparent because the strategy

itself, the basis of further planning, is absent — either

not documented or even carefully thought through

(which is usually the case) or merely a vague and

hastily drawn up statement not communicated to the

managers or planners in the organization. But whatever

the reason for its lack, without strategic planning there

are significant disadvantages, such as:

•	 Aiming at goals which are not strategically

useful, which leads to inappropriate and

wasteful effort;

•	 Failure to aim at some strategically advantageous

goals, which leads to lost opportunities;

•	 Inconsistency in approach across the

organization, which leads to waste and

confusion;

•	 Uneconomic methods;

•	 Lack of coordination of suppliers and the

making of uneconomic purchases;

•	 Bottom-up management.

Strategic planning achieves (or should achieve) two

ends in particular. It should add clarity and visibility to

the strategic goals, and it should provide an outline plan

for achieving them. In carrying it out, three questions

need to be answered.

Where do we want to get to? This is often the easiest

question to answer, for it can take no more than a

‘vision’ to resolve the issue. Yet, in its fullest form,

the answer must depend on such issues as what

competitors are doing, what technologies are

available, and what market niche we should aim at.

The answer to this question is the strategic goal.

Where are we now? This is usually the most difficult

question to answer, for answering it requires

measurement, and most managers guess their

position rather than measure it. For example, if

we define a strategic goal as being to increase our

market share of a given product, knowing that we

achieve it depends on knowing our current market

share.

How do we get there? Although some answers may

readily suggest themselves, the route to the strategic

goal needs careful planning. Some routes are more

Software
Projects

54The Importance of Strategy

existence. From this comparison, the following may be

deduced:

•	 Existing systems possessing functions which

fulfil a current need;

•	 Existing systems possessing functions which

are obsolete and do not meet a current need;

•	 Existing systems which are in their entirety

redundant or obsolete and should be abolished;

•	 Existing systems which could be adapted to

meet current or anticipated needs;

•	 Proposed systems which need to be developed;

•	 Connections between systems which need to be

put in place.

Given these deductions, projects may be proposed for

the development of new systems and the modification

or phasing out of old ones. Strategic necessities may

impose time constraints on the projects, which would

allow an initial prioritization to be carried out and

timescales to be set.

Thus we arrive at an information systems

development plan (or strategy) which shows how the

business’ information system requirements should

be met and over what period. This aids not only the

business as a whole, but also staff and skills planning

for the development of the systems.

When the technical aspects of the information

systems strategy (such as hardware and software

standards and purchasing policy) are applied to the

systems to be developed, an integrated plan of the

business’ information systems may be generated. This

should ensure optimized data storage and updating,

standardized communication between systems, and

cost-effective maintenance. It also should ensure that

the boundaries of systems are clearly defined, and this

is important for the project managers of the various

system development projects.

7.4	 Notes On Strategy And Planning
Planning in an organization should be a continuous,

seamless process. It should be continuous through

time, for every plan needs to be reviewed periodically

and adjusted in response to changing circumstances.

It should be seamless from the definition of strategy,

through strategic planning, right down to the detailed

planning of projects and day-to-day tasks, with higher-

level plans defining the criteria to be met by, and the

all the systems needed, or thought to be needed,

by the business in meeting its strategic goals. The

interconnections between systems should also be

included. The scope of each system is thus implicitly

defined and can be explicitly described. The users and

potential users of each system are also identified, or

at lease are identifiable, and this, as has been shown,

is of considerable importance to a project manager in

controlling a project. This is top-down planning which

supports both the management of the business and the

cost-effective implementation of tools (such as computer

systems) to support the business.

From the systems plan, too, the strategic constraints

on any given system, which may be vital during its

development, can be identified. For example, if a new

product is estimated only to be viable if it can be

brought onto the market within two years (say, because

it needs to precede its competition), the implication on

a computer system intended to be a part of that product

could be that it needs to be developed within (say) one

year. Then time, rather than budget, may be the crucial

factor in the development of the system. Business

objectives for the system and the development project

can be set accordingly, with the project manager taking

them into consideration in planning and managing the

project. Indeed, in an ED project, the strategic objectives

will define the priorities of business functions and thus

contribute to maximizing the effectiveness of each

successive delivery.

Once the users (or intended users) of a proposed

system are known, the requirements capture for the

preparation of its specification of requirements can be

planned. This is not to say that the initially identified

users will be the only users, or even that they will

have all been correctly identified, but at least the

starting point for the systems analysis will have been

determined. Systems analysis depends on following

clues, and if competent analysts are clear about where

to begin, what the scope of the system is, and what

constraints apply, the chance of identifying all relevant

viewpoints on the system and thus developing a good

specification of requirements is enhanced.

It is often the case that a number of the functions

identified in the systems plan are already being carried

out. The ideal plan, showing all required systems, thus

needs to be assessed against the systems already in

55 The Importance of Strategy

Software
Projects

7.5	 Sensitivity To Change
When a system is planned bottom-up, that is, only

from users’ requirements, it is highly sensitive to

changes made to the strategic direction of the business.

When a system is based on a strategic plan, it is less

sensitive to business changes. To understand these

statements, consider the three-tier (simplified) model

of a business shown in Figure 7.1. The bottom layer

represents the ‘workers’, who usually include the

users of the system. Typically, the users are those who

prepare the input data, use the output data, and operate

and maintain the system. The middle layer represents

the users’ managers, and the top layer represents senior

management.

The workers on the bottom tier are most numerous,

and among them there are frequent staff changes.

Individuals make career moves, are promoted, and leave

the company. In addition, there is the arrival of new

recruits and staff transferred from other parts of the

organization. With each arrival and departure there is a

small change in working practice, and these take effect

as changes to the requirements on a system. However,

the influence of staff at this level is small, so the changes,

though many, are typically not far-reaching.

The managers on the middle tier are the users’

managers. They define working practices, the

distribution of work, and the relationships between

individuals and teams. As managers leave and are

replaced, and as they initiate changes in work allocation

and in procedures, they affect not merely the end-users’

constraints on, the lower-level plans. Thus, the line

between strategic planning in a business sense and

information systems planning is a blurred one. What is

important is that the planning continuum exists. At the

same time, it is also important to define certain points

at which the nature of planning (or at least the basis of

the planning process) changes. At some point, planning

which is strategically relevant to an organization as a

whole gives way to the more detailed planning of the

tactics to meet the strategically defined goals.

Much has been made of ‘information systems

strategy’, and the impression is often given, or received,

that it is an end in itself. This has led enthusiastic

systems managers to define ‘strategies’ which call for

the latest technologies and tools because they are in

vogue, or because of exaggerated advertisements. But

the latest technologies and tools, even if they are indeed

true to their advertisements, may not be cost-effective

or practical in a given organization, perhaps because no

one is trained to use them, or perhaps because they are

incompatible with the existing technologies and tools

within the business.

It is important to recognize that an information

systems strategy is not an end in itself. It has no real

existence other than in support of the business, and

should be derived with reference to the business’

strategic goals. While it should include such things

as standards for hardware, software, tools and the

interconnections between systems, these should be

practical and attainable in the context of the business.

Figure 7.1: A Simple Three-tier Model of a Business Hierarchy

Software
Projects

56The Importance of Strategy

controlled. If there are no stated business objectives

for the system, and if the system’s scope is not defined,

there are no criteria against which to assess and control

change. Strategic planning is particularly important as

a basis for ED projects.

7.6	 Strategic Concurrence
A sound planning process should result in the

identification of the data flows to, through and from the

system, and the identification of the intended system’s

users — which should lead to the capture and analysis

of the users’ requirements.

Ideally, the requirements should be within the

defined system scope, but numerous influences result

in this seldom being the case. Among them are the facts

that in practice the users are unlikely to be familiar with

the business planning process, the objectives for the

system or the constraints on it, or the changes which will

be made to working practices and skill requirements as

a result of the introduction of the system. Typically, the

systems analysts interviewing the users simply enquire

what their requirements are. Naturally, the users take

an idealistic view and define requirements which

would seem to suit their present needs rather than

trying to visualize those which would suit the business

as a whole or which would be appropriate to a system

in a reorganized way of working.

Therefore, if there is to be any confidence that

the system conforms to its strategic objectives, the

requirements need to be validated against the strategic

plan for the system. This needs to be done by a senior

manager involved in the organization’s strategic

planning and conversant with its information systems

strategy. The process of authorizing the requirements

by strategic validation may be referred to as giving

‘strategic concurrence’.

Initial strategic concurrence is not sufficient,

however, to ensure the effectiveness of a system. It

has already been observed that almost certainly there

will be numerous changes to the requirements during

the development of any system. In theory, at least, an

abundance of changes outside the defined scope of the

system can lead a strategically approved specification

to end up as a strategically ineffective system. It is

therefore imperative for a business strategist to remain

responsible throughout the project for the concurrence

requirements on a system, but the functions of the

system. Their changes are more far-reaching than those

of the users.

Senior managers on the top layer are responsible

for the direction of the business. They determine when

new products are to be introduced and old ones phased

out, they define the budget and the staffing levels for

the business as a whole and for each department. Such

decisions are fundamental to the definition of functions

and the staff structures at the lower levels. Even

small changes at the top can have significant effects

at the lower levels. It is the top-level decisions which

determine the need for systems in the business and the

uses to which the systems should be put.

Thus, changes on the bottom tier are at the data

level, those on the middle tier are at the function

level, and those on the top tier are at the system level.

Systems planned at the top tier are more likely to match

the needs of the business and support the direction of

the business, are better understood by the strategists

and so are more readily adapted to meet changing

business needs, and can tolerate changes at the two

lower tiers. Systems planned at the middle tier can

tolerate changes at the lowest level, but are more likely

to become obsolete in the face of changes at the top

level and are less easily adapted to meet them. Systems

planned only at the bottom tier are less likely to match

the real business needs in the first place, will be most

sensitive to top-tier changes in business direction,

and least easily adapted to meet changing strategic

demands. Numerous systems built only to meet users’

needs have been abandoned because of the difficulty

(and sometimes the impossibility) of changing them in

response to adjustments in business direction. A great

deal of money has been squandered in this way. The

importance of strategic planning prior to the definition

of projects cannot be too strongly emphasized.

When it comes to ED projects, establishing basic

criteria for the system, against which all proposed

changes can and must be assessed, is crucial. One of

the principles of ED is that it offers users and customers

an early opportunity to assess the system. One of its

great advantages is that changes proposed by users

can be implemented early so that the system, as it is

developed, meets their real requirements. But change

can easily get out of hand and therefore needs to be

57 The Importance of Strategy

Software
Projects

in a review of the project plans and of the work already

carried out on the project. A project with changed

goals is a new project which requires new plans and

a new definition of its purpose, its constraints and its

product. If these are significantly different from before,

development should be halted and systems analysis

resumed. Although the inclination of senior managers

is often to carry on the project according to the current

schedule — because, they argue, changing now would

make the system late — such a decision leads to the

development of the wrong system, with a great deal

of waste. What is the value of a system on time if it is

the wrong system? Often the most effective option is

to cancel the project, and this takes courage — but it is

the business of senior managers to determine the best

option and have the courage to take it. Yet it is senior

management who in the past have led to many of the

delays in projects and the ineffectiveness of developed

systems, mainly because they have not discharged their

duty to think, plan and, importantly, act strategically.

As we shall see in Chapters 11, 12 and 15, the

effective control of change in ED is strongly dependent

on strategic planning — and, indeed, on understanding

and using the strategic plans. The role of a strategic

representative to the project is crucial.

7.7	 Summary And Extracts
In many, if not most, organizations, strategic

planning is nonexistent, inadequately carried out, or

not communicated. Yet, business objectives for systems

to be developed should be derived from strategic

planning.

This chapter offers brief guidance on the strategic

planning process and on how it should be used to

inform the planning of information systems and

development projects. It describes the role of senior

management in strategic planning and the importance

of strategy to project managers.

The following extracts make some of the points of

the chapter.

In the first place it [a strategic plan] would have

assisted in identifying the future users of the system,

and in the second place it would have provided me with

the basis of declining to accept requirements which

were inappropriate to the system.

•	 Although a project manager’s terms of reference

(or rejection) of proposed changes to the requirements. It

should not be expected that the strategic representative

is involved in all the detail of analysing the users’

requirements, but only in validating those which have

been approved by the customer for development (see

Chapters 8 and 11 for more information on the strategic

representative’s role).

The permanent involvement in the project of a

business strategist, and the existence of procedures

for the strategic concurrence of both the original

specification and any intended changes, offer comfort

to the project manager.

But the project needs to be based on a strategic plan

to start with; strategic concurrence to changes is hardly

worthwhile otherwise.

Even strategic plans can change. Businesses react

to changes in customers’ needs, in competition, and in

national and international conditions; they enter new

lines of business, initiate new products and discontinue

old ones. These adjustments change the business’ goals,

whether or not they are formally reflected in documented

strategy statements. But they should be. Numerous

systems have been developed unnecessarily, often at

considerable expense, because senior management were

not sufficiently aware of the relationships between the

projects and the organization’s strategy to cancel them

when the systems under development were no longer

needed. The strategic representative on the project

should therefore vet not only the proposed changes

to the users’ requirements for concurrence with the

business strategy but also the project as a whole for

concurrence with any changes to the business strategy.

He should keep the project board (see Chapter 8)

informed of changes to the strategy and, in consultation

with the other board members, deduce their effects on

the project and the requirements specification.

When strategic changes which affect the project take

place, the following questions, among others, should be

raised:

•	 Does the business still need this system?

•	 Does the business require all the functions of

the system?

•	 Should the levels of system attributes (such as

security, reliability and availability) remain the

same?

A ‘no’ answer to any of these questions should result

Software
Projects

58The Importance of Strategy

•	 An information systems strategy is not an end

in itself. It has no real existence other than in

support of the business, and should be derived

with reference to the business’ strategic goals.

•	 If there are no stated business objectives for the

system, and if the system’s scope is not defined,

there are no criteria against which to assess and

control change.

•	 The users are unlikely to be familiar with the

business planning process, the objectives for the

system or the constraints on it, or the changes

which will be made to working practices and

skill requirements as a result of the introduction

of the system.

•	 The requirements need to be validated against

the strategic plan for the system.

•	 In theory, at least, an abundance of changes

outside the defined scope of the system can lead

a strategically approved specification to end up

as a strategically ineffective system.

•	 Numerous systems have been developed

unnecessarily, often at considerable expense,

because senior management were not sufficiently

aware of the relationships between the projects

and the organization’s strategy to cancel them

when the systems under development were no

longer needed.

•	 A project with changed goals is a new project

which requires new plans and a new definition

of its purpose, its constraints and its product.

do not normally include strategic planning, it

is crucial that he understands its importance

to the success of a project ... If it turns out that

the proposal for the system arose only out of

users’ requirements, and that it is not defined or

supported by a strategic plan, the astute project

manager will certainly sense danger.

•	 Strategy suggests a certain clarity of intention,

a definition and understanding of the goal to be

aimed at, and a statement of the direction to be

taken in attempting to attain it.

•	 Like every plan, strategy must be dynamic.

It should not be (and is sure to be counter-

productive if it is defined as) a rigid blueprint

for the indefinite future.

•	 Strategic planning ... should add clarity and

visibility to the strategic goals, and it should

provide an outline plan for achieving them.

•	 Coordinated systems planning implies assessing

an organization’s total data and information

requirements and integrating them into a ‘grand

plan’.

•	 Within the scope of an organization’s overall

needs, a systems plan, or architecture, may be

produced, not for a single information system

but (ideally) for all the systems needed, or

thought to be needed, by the business in meeting

its strategic goals.

•	 If competent analysts are clear about where to

begin, what the scope of the system is, and what

constraints apply, the chance of identifying all

relevant viewpoints on the system and thus

developing a good specification of requirements

is enhanced.

•	 Planning should be a continuous, seamless

process.

59 Project Infrastructure

Software
Projects

naturally. Typically, the project participants can be

likened to the musicians in an orchestra: they may be

conscientious in discharging their own responsibilities,

but not necessarily concerned with what it takes to

blend the individual performances into an harmonious

symphony. The project manager, on the other hand, may

be likened to the conductor who must take a ‘system

view’, appreciating the detail of each component but

at the same time not losing the vision of the complete

work. He must understand how each component needs

to be integrated into the whole, what it takes to bring

about the integration, and how he is going to achieve it.

In order to facilitate communication and to

coordinate the efforts of the various participants during

the project, the means of doing so must be planned

and put in place before development commences. A

‘project infrastructure’ must be created. The three most

important aspects of creating it are:

•	 Identifying the project participants and ensuring

that they understand and accept their roles;

•	 Creating a communications infrastructure

(including committees, meetings, and reporting

8.1	 The Issues
The heart of a project is the development of the

product — the system. Yet, if consideration is only

given to technical development, without planning,

coordinating and monitoring the effort invested, the

project is almost certain to run into difficulty. When

a number of people work together, there is a need for

communication between them and coordination of

their efforts.

The project manager’s purpose is to control the

project and thus ensure that it is completed on time,

within budget, and to the customer’s satisfaction. At

the best of times, control of a software development

project is difficult. Without having appropriate teams,

communication channels, reporting procedures,

and other infrastructure components in place, it

can be almost impossible. The communication and

coordination are sometimes thought of as overheads on

the basic development process, but they are essential to

the success of the project. They must be efficient in their

functioning and effective in achieving their purpose.

In spite of their importance, they do not occur

8
Project Infrastructure

Software
Projects

60Project Infrastructure

causes are not traced and removed. Almost certainly,

the time spent on them will not have been allowed for

in the project plans, so they cause the project to go late

and over budget. Then, because the problems are to do

with human issues — failures in communication and

a lack of coordination of effort — they are perceived

as unfortunate incidents which can occur at any time

without warning. Their persistence is attributed to a

run of bad luck, to the lack of cooperation of this or that

project participant, or to ‘uncontrollable forces’. The

project manager does not recognize that he could (and

should) have created a run of good luck, and facilitated

cooperation, by putting a sound infrastructure in place

at the commencement of the project — and thereafter

devoting a proportion of his own time to maintaining

it. People are capricious and individualistic and often

uncommunicative and uncooperative, but they can be

the opposites of these if the project manager creates a

supportive environment for them to work in.

Project managers would usually accept the notion

that the success of a project depends on their planning.

But frequently planning is perceived only as scheduling

the technical activities involved in development.

Only occasionally is there an awareness of the need

to plan the ‘people’ aspects of the project, or does the

project manager possess experience and competence

in doing so. But if a project infrastructure is put in

place early, and the project manager invests time and

effort in maintaining it and inculcating its principles

and procedures into the culture of the project, the

probability of smooth running is greatly enhanced,

and the project manager stands to reap the rewards

— in the lack of major problems, in the relative ease

of resolving problems when they do occur, and in the

resulting success of the project.

8.2	 Project Components
The first step in the creation of a project infrastructure

is the identification of the principal participants, for it is

these who must make the major decisions within the

project and solve significant problems when they occur.

Their roles must therefore be clearly defined; they must

be available when needed and so must understand

their own roles in the project. It is they who will need

to be kept up-to-date on the progress of the project,

technically and with respect to time and budget, so

mechanisms) for ensuring that the participants

provide and receive the necessary information

and that appropriate actions are taken when

necessary;

•	 Defining and putting in place a document

infrastructure.

In addition to these three ‘management’

infrastructure components, there also needs to be a

‘technical’ infrastructure in place. This is introduced in

Section 8.7 below and its components are discussed in

detail in subsequent chapters.

It is important to have an ‘initiation’ stage of a project,

with its principle purpose defined as being the creation

of the project infrastructure. Yet all too frequently there

is no initiation stage. Why? Because the project manager

does not appreciate the importance of the project

infrastructure. And why not? Because even today

those things which are seen as important in a project

are the technical activities — the ‘doing’ activities,

such as designing, programming, and sometimes even

testing. Preparing for ‘doing’, attempting to make sure

that when the ‘doing’ is carried out it is effective and

efficient, is often neglected, and when considered, is

perceived as something to be got out of the way quickly

so that the doing can begin. In many ways, things have

not changed a great deal in projects since the early days.

If senior management want successful projects, they

must install the right people as project managers, train

them appropriately, counsel them in what is required,

and monitor their progress and achievement. In other

words, senior management need to understand project

management and what it takes to make a project

successful, and to subject their project managers to the

same scrutiny to which they subject other managers.

If a project infrastructure has not been created, it is

inevitable that problems will occur later in the project.

When they do, the connection between them and the

lack of an infrastructure is seldom made. They are not

seen to have been avoidable, or even foreseeable, because

the project manager did not recognize the need for an

infrastructure in the first place. It is likely that the time

taken to resolve the problems is excessive, for the means

of coping with them is not defined, and frequently the

people necessary to solving them are not available when

needed. Then the problems recur because, without the

means of their resolution, time is short, and the root

61 Project Infrastructure

Software
Projects

least one assistant whom we will refer to as the project

management assistant (PMA).

8.2.2	 The Development Team
In Chapter 4, the distinction was drawn between the

management of the project and that of the development

of the product. Managing the project involves

maintaining overall control, not only of the development

process but also of such essentials as the production of

documentation and training materials for the customer,

of the purchase of necessary equipment, controlling the

budget, and communication both within the project

and across the project boundary. At the same time,

the development of the system is not only the main

purpose of the project but also the most significant

task within it. Without the developers there would be

no product and therefore no project. Whereas in small

projects it is feasible for the development manager also

to be the project manager, in practice the person taking

on both roles needs to understand both as well as the

difference between them. Too often such a person is

of purely technical background, with the result that

project control is ignored (see Chapter 4). The separate

definition of the project management and development

management functions is a necessary step in any project.

Then, if the project is indeed small and the two roles are

assumed by the same person, they can be discharged

separately, with reports to senior management clearly

distinguishing between the control of the project and

the progress of the development of the product.

In an ED project, it is unlikely to be practical to

integrate the two roles. Each is a heavy load, as we

shall see in subsequent chapters. The second principal

component of the project is therefore the development

team, the structure of which is discussed in Section 8.4.

8.2.3	 Customers and Users
In Chapter 3 the problems arising from the absence

of the customer from the project were discussed. The

customer’s involvement throughout the project is

crucial, but ‘customer’ is a vague word in this context.

There are three categories of people in the customer’s

domain with interests in the project:

•	 The intended users of the system and

their managers. They will have functional

requirements on the system, mostly taking the

they will require appropriate information delivered to

them promptly.

There are four principal roles in a project. The

following paragraphs treat the roles as though they

were played by separate individuals or teams, but in

small projects it is possible for roles to be combined —

for example, for an individual to perform the roles of

project manager and development manager, or customer

representative and strategic representative — and thus

make the number of participants commensurate with

the project size. But it is always important to recognize

the roles which are being enacted, for by understanding

the roles we become aware of the activities which need

to be carried out if the project is to be successful.

8.2.1	 Project Management Team
A project manager needs not only to coordinate the

work of a project but also to be involved in it. Doing

all the ‘right’ things (planning, delegating, monitoring,

reporting, and so on) should provide the basis of control,

but usually the first clues of something going wrong are

there to be detected long before they are made available

through the formal reporting channels. If a project

manager wishes to detect them early (if he wishes to

sense the spirit of problems before they materialize

— see Section 4.6 of Chapter 4), he needs to know and

regularly talk to the people on the project. But in any but

the smallest projects, the load of planning, delegating

and coordinating work, monitoring progress, reporting

to the customer, senior management, and the project

team, taking corrective action, and providing the

leadershig code’ thp necessary for inculcating a ‘good’

project culture, is already more than a full-time job for

one person. The project manager needs assistance. In

too many projects the full load falls to one person, often

with the result that the ‘standard’ tasks receive all the

attention and taking corrective action receives none

— with the result that the project runs into difficulty.

It is not enough for the project manager to have the

information on what is wrong in the project, he also

needs both the time and the resources to do something

about it.

The size of the project manager’s team depends on

the size and complexity of the project. It also depends on

whether the project manager is able to delegate ‘project

management’ tasks to others. Let us here assume at

Software
Projects

62Project Infrastructure

function entirely within the customer’s organization

and not be visible within the project. In a contracted-out

project this may be the case, and any changes introduced

by the customer representative would already have

been vetted for strategic concurrence. However, in

order to explain the appropriate responsibilities, the

strategic representative will in this book be defined as a

project participant.

8.3	 Project Relationships
8.3.1	 The Customer Council

A system is frequently planned to support a number

of parts (for example, departments) of an organization.

There are then a number of senior managers of equal

rank who will make demands on the system, will

therefore have some responsibility for it, and who

perhaps will consider themselves to be owners of it.

Typically, such managers have different, and often

conflicting, objectives for the system. Yet, typically they

do not take time, at least not sufficient time, to meet

and discuss their objectives for it, their ideas about it,

their claims on it, and their plans for its development.

Without coming together to discuss these matters,

the managers are unlikely to arrive at a consensus,

and without a consensus there will be conflicting

demands not only on the system once it is in operation,

but also on many aspects of its development, such as

the budget and where the money should come from,

the availability of support from the customer, and the

priorities of delivery of system functions.

It is a fundamental requirement of a project that

all that is done within it should be towards a common

goal. If there are conflicting goals, there is bound to be

trouble. Indeed, lack of a common goal suggests either

that the project should be halted until the diversity is

focused into a single goal or that there should be more

than one project.

It is therefore in the interest of everyone on the

project for the managers to agree among themselves on

their objectives and expectations for the system and the

project, so there needs to be a process to facilitate their

doing so. The following is such a process. Although

it may be argued that the customer’s responsibilities

should not be the concern of the project manager, the

latter will suffer increased difficulty in controlling

the project if there is a lack of consensus and so needs

form of what it should do, how it should respond

to their commands, and what the screens and

other outputs should look like. They are the

intended ‘users’ of the system.

•	 The senior managers who will ‘own’ the

proposed system and who have commissioned

the project. They are the developers’ ‘customers’.

They may be the users’ department heads and

should determine the business functions which

the system should support. They should define

their criteria for measuring the success of the

development project and the acceptability of the

system.

•	 The organization as a whole, as represented

by its business strategy and its information

systems strategy (see Chapter 7). Ideally, plans

for the system based on the organization’s

business strategy should determine the business

objectives for the system, and the information

systems strategy should place constraints on

the system’s design. Strategic constraints on the

system are particularly important in ED because

of the number of changes which are likely

to be requested during development. These

aspects are the responsibility of the strategic

representative (see Section 8.2.4).

Both users and their senior managers should

be consulted during the preparation of the original

specification, both are likely to desire changes

to the system as deliveries are made, and both

should be involved in the project throughout. The

‘customer representative’ should be one of the senior

managers, and his team should include at least one

‘user representative’. The manner in which both are

represented on the project is discussed in Section 8.3.1.

8.2.4	 The Strategic Representative
In the previous chapter the need for strategic

concurrence to all requirements was established,

and this implied the need for someone familiar with

the business and information systems strategies of

the customer’s organisation to vet not only the initial

requirements but also any changes to them. The need

for a strategic representative throughout the project

was thus defined.

It is true that the strategic representative could

63 Project Infrastructure

Software
Projects

that ED is successful — that is, that the changes made to

its requirements do indeed keep it on course to satisfy

the true needs for it.

Being a senior manager, the customer representative

is unlikely to be able to spend a great deal of time on the

day-to-day affairs of the project. Yet it is important that

there is a continuous customer presence on the project

and that the communication between the customer and

the supplier is harmonious. A support team is therefore

required for the customer representative, in the form

of a (or more than one) ‘user coordinator’. The user

coordinator should be assigned to the project to liaise

with the developers, to assist in regular progress and

quality reviews, and to provide regular feedback to

the customer representative and thus to the customer

council. Some of the functions of the user coordinator

are included in his membership of the ‘coordination

team’ (see Section 8.3.3).

I think that the user coordinator should be involved

in activities intended to assure or check the quality

of the emerging product, such as design reviews and

quality assurance. This provides the supplier with

an ‘extra pair of hands’ at no cost, and it provides the

basis of reassuring feedback to the customer. Yet, many

suppliers (and project managers) do not like this level

of customer involvement, perhaps because they are not

confident that the feedback to the customer will indeed

be reassuring. But gaining the customer’s confidence

in a project is a great prize. Further, if having a user

coordinator present means that we must put our house

in order, then his presence is invaluable. I believe that

suppliers should put their houses in order by adopting

quality practices, that they should welcome the user

coordinator, and that, if he finds the occasion to criticize,

they should accept the criticism with gratitude and use

it to bring about improvement.

8.3.2	 The Project Board
The project board comprises those senior participants

who have the authority to take consequential decisions.

They are: the project manager, the development

manager, the customer representative, and the

strategic representative (see Figure 8.1). The purpose

of the project board is to review project progress and

continually to take decisions on the project’s direction

— whether it should continue on its present course,

to include the creation of a ‘customer council’ in the

setting up of the project infrastructure.

The customer council should consist of all the senior

managers who have a responsibility for the intended

system. The first three tasks for this body to perform

are to arrive at agreement on their objectives for the

system, to elect one of their number to represent them

on the project (to be the ‘customer representative’), and

to arrange for user participation in the project.

Arriving at a consensus is seldom easy for such a

body, not least because they may have no understanding

to start with of each other’s (or even their own)

objectives for the system. The most efficient way of

overcoming this barrier is via a facilitated meeting, or

series of meetings. This is particularly effective if the

facilitator employs a tool (for example, the Soft Systems

Methodology [Checkland 90]) designed to aid both the

identification of a common purpose in the different

managers’ views and the arrival at a consensus on a set

of objectives.

When the customer council has arrived at and

documented a common set of objectives for the

system, its next task is to elect from among its

members a representative to the project. The customer

representative will be a member of the project board

(see Section 8.3.2) and so should have the authority to

take major decisions on the development project and

the system being developed.

Choosing a customer representative does not

discharge the other senior managers from further

responsibility for the proposed system or the project.

The customer council should meet at regular intervals

to receive reports from the customer representative

and review the progress of the project and the extent

to which it continues to meet their objectives for it.

In an ED project, the many proposals for change will

occasionally either explicitly or implicitly seek to

alter some fundamental purpose of the system, and

the customer council will need to decide whether to

permit such changes. If they do, they may then have

to consider whether to change their objectives for the

system. There needs to be a perpetual review of their

own demands on the system, both because it will be

changing as a result of other influences and because

of changes in their own organizations. The customer

council therefore has a major role to play in ensuring

Software
Projects

64Project Infrastructure

on the board and they must understand their roles and

discharge them conscientiously.

The project board serves not only to bring the

right people together, but also to remind them of their

responsibilities to the project. The meetings retain

their awareness of their responsibilities. Thus, should

a major problem occur, they will not only be accessible,

but they will also be up-to-date on the project’s situation

and, therefore, in a position to take decisions which

otherwise might take weeks or months.

If the board is to function efficiently, and if its

members are to not to be alienated by their time being

wasted, discussion must be at a decision-taking level.

Too frequently senior managers squander their time

at meetings on trivia and then regret attending the

meetings. It is they who should recognize, demand

and assure the level of discussion appropriate to their

positions. But given that they seldom do so, the project

manager must define an appropriate agenda and ensure

not only that the right information is presented to the

project board, but also that it is presented in the right

form.

If senior managers are presented with raw data and

invited to analyse it, they often do so with great interest.

But their purpose should be to make system- and

project-level, rather than component- and task-level,

decisions, and for this they need processed information

and not raw data. Their time should only be spent on

task-level detail when the evidence of poor quality,

dubious results, or a lack of attention to procedure

shows that it is necessary. A great deal of time is wasted

by project board members being asked, for example, to

examine test data rather than being presented with a

final test or quality assurance report.

The project manager must therefore put procedures

in place to ensure that information is processed before

it is presented to the project board, that it is presented

in advance of meetings, that quality has been assured,

that results are clearly presented and defendable, and

that signing-off procedures have been observed so that

the project board can have confidence that progress of

the project is being honestly reported.

Let us remember that the project board cannot prove

that all is well with the project; its purpose is to derive

an appropriate level of confidence that all is well.

whether it should change direction and, if so, what its

new course should be, and in some cases even whether

it should be terminated.

The first thing which the project manager needs

to ensure is that each of the project board members

knows, understands and accepts his role. As already

mentioned, a major problem in many projects is not

merely the lack of participation of senior managers

but the time which it takes them to become effective

when they do become involved. Rapid resolution of

problems demands familiarity through constant active

involvement.

For the project board’s decision-making process

to be continuous rather than intermittent, the project

manager needs to ensure that the members are kept

well informed and that they meet regularly so as to be

in the habit of working as a team. Yet, given that the

project board is composed of senior managers who

are unlikely to be involved in the daily running of the

project, ‘regular’ may imply every two or three months

on a large project, if things are going well.

At the same time, arrangements need to be in place

to call a meeting at short notice if a significant problem

makes this necessary. Meetings should be planned well

in advance (we had a rolling one-year schedule) and

board members should be encouraged to apply peer

pressure on each other to ensure that reliability is the

norm and cancellations are frowned on. Nor should

substitutes for members at meetings be acceptable,

if they are not empowered with the authority to take

consequential decisions. A great deal of time is wasted

by substitutes having to ‘refer back’ to their managers

before a decision can be taken, and by board members

reversing decisions taken by their substitutes at

previous meetings. If the project is to run smoothly, the

right people (with the right level of authority) must sit

Figure 8.1: Customer Council and Project Board

65 Project Infrastructure

Software
Projects

do it. Their plans were included in their weekly reports.

Each week a report was submitted to the project

manager (and copied to the development manager

and customer) — see Figure 8.2. In this, the monitored

information was presented so that progress was

clearly defined. Reasons for not meeting targets were

also presented, along with a statement on what action

was being taken. In the main, the project manager’s

assistance was not required, but if a problem was not

resolved in the time allowed for it, or if rearranged

targets were not met, he was asked for his support,

or he stepped in to make appropriate decisions and

use his authority to achieve the necessary results.

The coordination team’s weekly reports were not

lengthy. They conformed to a guideline which avoided

extraneous detail and made them easy to prepare but

which ensured that appropriate records were kept.

This form of monitoring is effective in a number

of ways. Not only does it involve all parties with an

interest in the project, it also places responsibility on

them for the success of the project. Working-level staff

respond positively to the responsibility which it places

on them. Indeed, it not only provides them with an

incentive to take initiatives but it also develops their

sense of responsibility. Moreover, it takes a load off the

project manager’s shoulders while keeping him well

informed.

8.4	 Development Team Structure
A large development project demands a large

development team, under the jurisdiction of the

8.3.3	 The Coordination Team
To control the project, the project manager needs

information. The acquisition of information implies

monitoring the progress of development. How the

monitoring is carried out and by whom, and how the

information gets to the project manager, are issues

which need to be planned at the start and included in

the infrastructure. A means which we found effective

was for it to be done on a continuing basis by a working-

level team, the ‘coordination team’, consisting of the

project management assistant, the user coordinator,

and a development team representative.

The various project participants have different

viewpoints on the project, and they may have different

short-term needs, but all of them have the same long-

term goal of a quality system. What better, then, than

for them to work together to monitor the progress of

development?

In our projects, the three coordination team members

met regularly in the course of their various individual

responsibilities, but they were mandated to hold one

formal coordination team meeting at a predetermined

regular time each week. This was chaired by the project

management assistant. The monitoring variables

were defined by the project manager, and these were

reported on (at the coordination team meeting) each

week by the development team representative, who

had previously collected the relevant information from

the various parts of the development team and held

discussions with the development manager. Reasons

for delays were reported, and solutions to problems

were discussed. Actions from the previous week’s

meeting were reviewed.

The principle was that local solutions should be

found and implemented whenever possible. This gave

the team and other working-level staff the responsibility

for their work and its problems and the authority to

take appropriate action to meet their targets. However,

they needed to recognize the infmodel that all will go

well throughout tluence of their problems on the rest of

the project, so they had limited time in which to resolve

them. But ‘limited’ did not mean uncertain. From the

working-level plans, they knew how much time they

had to achieve solutions to their problems or to meet

new targets for tasks which had fallen behind, so they

needed to plan their work rather than simply decide to

Figure 8.2: The Coordination Team Within the Project

Software
Projects

66Project Infrastructure

the original specification, reviewed the architectural

design, and produced high-level designs for the

necessary changes.

The design and coding team received the high-

level designs, produced detailed designs at as many

levels as were needed for the application, coded the

individual modules of code, and integrated the system.

This team was sub-divided into two groups. The first,

the program and test team, carried out the designs and

programmed and tested the individual modules; the

second, the integration and test team, carried out the

successive stages of integration of the system, testing

appropriately as they did so.

The system test team carried out validation of the

system after its integration. As each delivery consisted

of the complete version of the system as it existed at the

time, validation was essential prior to each delivery.

As the system grew with each delivery, this became a

lengthy process. It is explained in Chapters 10 and 13.

The support team had two responsibilities, the first

being maintenance of the delivered system. Once a

version of the system was delivered, a copy of it was

kept ready for testing by the support team in case the

users encountered a problem. If maintenance changes

were made to a live system, they had to be incorporated

into all versions of the system then under development,

and this added complications and increased the effort

required. Thus, changes were deferred to a later

delivery if possible. Chapter 14 explains the decisions

involved and describes our maintenance process.

The support team’s second responsibility was to

provide support to the entire development team. They

serviced and maintained the development environment,

received and installed new versions of system software

and tools from suppliers, and instructed the other

development manager. A large team is usually

sub-divided into a number of smaller teams, each

coordinated by a team leader. Often the structure of

a large team remains as its manager inherited it —

because he didn’t think he had the authority to change

it, or because he just did not stop to consider whether its

structure was appropriate to the job in hand.

The project and development managers need to

determine the team structure which they believe will

best facilitate efficient development, from the points

of view both of the efficiency of the developers and of

their own control of the project. It would be possible,

for example, for each team leader to take on the full

responsibility for a given delivery, amending the high-

level design, carrying out the detailed design, doing

the programming and testing, and then delivering

it. A major disadvantage of this is that it removes

the dependencies between teams, and it is these

dependencies which provide the peer pressure which is

both an incentive to meet targets and a check on whether

they are met. Other disadvantages which experience

revealed were inefficiency in the use of skills, the

difficulty of distributing certain skills among several

teams (for all teams needed to possess the same skills),

the lack of independent testing, and inefficiency in the

management of the flow of work. Further, given that

the content of future deliveries is uncertain, devoting

teams to them can lead to a great deal of rework.

In any project, the project and development managers

must make their own choice as to the most appropriate

development organisation for their purposes. However,

the following paragraphs briefly describe one which

experience showed to be effective. As shown in Figure

8.3, the teams into which the development team was

divided reflected the categories of development work.

The organization of work was such that it flowed from

team to team.

Considering Figure 8.3, the analysis and architecture

team was responsible for the architectural and other

high-level designs of the system and for dealing with

the customer and users on specification matters. They

produced the high-level design for each delivery,

having in the first instance designed the architecture of

the system. They received requests for change (RFCs),

carried out the feasibility studies to analyse them, and

when the RFCs were approved, compared them with

Figure 8.3: Structure of the Development Team

67 Project Infrastructure

Software
Projects

at all or he collects what is easy to collect. Then, useful

purposes are not satisfied by the information, the

project manager has no firm basis for controlling the

project, and the project goes uncontrolled.

The information and data necessary to the project

manager should be defined at the commencement of the

project, and the monitoring mechanisms for acquiring

it put in place. Then the means of analysing it and

transferring the results to the project manager must be

planned and set up. This implies not only monitoring

but also reporting. What is more, reporting must be

timely; delays in reporting lead to delays in discerning

problems, delays in curing them, and thus slippage in

the project. Nor does the project slippage result merely

from time delays, but also, and more importantly, from

the fact that the more mature is the problem when it is

discovered, the more effort and time it requires for its

cure. Having to deal with the material manifestation of

a problem is the project manager’s punishment for not

sensing its spirit before it materializes.

One point that a project manager might usefully

observe is that progress cannot effectively be measured

in terms of effort invested but only by the achievement

of goals. If you praise yourself for great effort, you

will find yourself doing so for far longer than you had

hoped or intended.

One further point: reporting does not necessarily

mean long reports, or even written reports. The method

of reporting must be appropriate to the purpose.

Documentary evidence is often important, for instance

in the case of quality assurance results. Eloquence

is sometimes appropriate, for example in the case of

reports which are to be read by senior customers. But

even in these cases, brevity may not be out of place.

Guidelines should be prepared at the initiation stage

of the project for all types of project report, and they

should make it clear that time should not be wasted on

the inclusion of extraneous information.

A mistake which is often made is to believe that time

would be saved by combining the reports to fulfil two

purposes into one; in fact, the result is often a falling

between two stools and a wasting of time. First be clear

as to what is required, and then define clearly how it

should be produced and by whom. Then use the result.

If you find that the result does not serve the intended

purpose, discontinue its production and don’t waste

development team members in changes to their

environment.

The team structure which we created enabled a

smooth flow of work from team to team, in the manner

suggested by the waterfall model. It also facilitated

the development of team members’ expertise and

knowledge in particular domains and so increased

their confidence and efficiency and, indeed, their

professionalism. This was particularly significant in

the analysis and architecture team and the support

team, whose members dealt with the users. The good

relationships which were of such importance to the

project depended on their competence and confidence.d

for the development of an e I do not believe that any

other development team structure would have been as

effective in our circumstances.

8.5	 Communications
8.5.1	 Reporting Within the Project

In order to manage something, we need information

about it. Sometimes the required information exists

and we merely need to find and acquire it. In other

cases it may not be held by anyone in the form in which

we need it, so we must identify the data and plan the

analysis which will lead to the information. In all cases

we must be absolutely clear as to what we need and

how we are going to acquire it, so we need to follow

a path of questioning which goes something like this.

First we ask, What purpose do we need to achieve?

For a project manager, there are many answers to this,

for example, we need to produce a report to inform

senior management of the progress of the project, to

produce a report to give the customer confidence in the

progress of the project, and most importantly, to aid us

in controlling the project. The next question is, What

information do I need to accomplish these purposes?

That which I need to give confidence to the customer is

certainly different from that which I need to convince

myself that the project is on track, or that which I need if

I am to detect problems early. Then, Does the required

information exist in the form in which I need it and, if

so, where must I get it from? And, if it does not exist as I

need it, what raw data do I need in order to compose the

information, and where must I get that from?

Often such a process of reasoning is neglected, and

either the project manager does not collect information

Software
Projects

68Project Infrastructure

which we might need on the various technologies in

use, or on our equipment and software, can save a great

deal of time when we find, in the middle of the project,

that we need certain problems to be resolved by the

next day; establishing relationships with other projects

similar to ours can result in our receiving information

on problems and their solutions before they occur in

our project.

If communication mechanisms have not been put

in place, the likelihood is that the need has not been

recognised. Then when it arises, it is not recognized

that it need not have arisen, and the delay before it

is satisfied will consist of three elements. The first

is the time to come to the realization that external

communication is necessary (or desirable), the second

is the time to identify the external source with which

to communicate (to do business), and the third is the

time to conduct the business. Putting an infrastructure

in place can seem so simple that it is overlooked; or, if

it is considered it is scorned; but its absence leads to far

greater problems than do the various technical concerns

in which project managers often immerse themselves.

8.6	 Document Infrastructure
Although the project’s principal product is a computer

system, and the contents of the deliveries are software,

a great deal of a project is given over to the production

and maintenance of documentation. Moreover, the

success and smooth running of the project depends on

documentation. This section is a brief indicator of what

needs to be catered for in creating a sound document

infrastructure (including the rules for maintaining it) at

time on it. In other words, monitor the effectiveness of

your own operations.

8.5.2	 Transfer of Information
If the large amount of information which needs to

be transferred throughout the course of a project is to

be communicated smoothly, formal mechanisms such

as those mentioned in the previous section need to be

installed and maintained. Yet, all necessary information

can never be transmitted by formal routes: there are

some things which people will not say openly, some

which they will not say to certain people, some which

they will not document, some which they do not think

of saying, and some which they cannot consciously say

because they are not aware that they know them.

If the project manager is to sense the spirit of

problems before they materialize, he must discover the

early clues. He must become involved. He must get to

know everyone on the project and become someone in

whom they are willing to confide — which means that

he must win their confidence and not demand or expect

it. He needs to be sensitive to body language. In order

to discover from people those things which they would

not think of communicating and those things which

they do not know that they know, he must ask the right

questions. Then he must listen to the answers: listening

is an art he must learn and practise. Further, as it is only

in casual or spontaneous encounters in which certain

things are said, he needs to have such encounters:

it is often the case that more useful information is

transmitted in the corridor, in the pub and in the toilet

than at meetings. Spontaneous encounters need to be

planned.

8.5.3	 Communication Across the Project
Boundary

Figure 8.4 shows a number of examples of lines of

communication across the project boundary. It reminds

project managers (and others) that such communication

is necessary. The means of achieving it must be provided

as part of the project infrastructure if delays are not

to occur when the need arises. For example, when

staff with certain skills are needed at short notice, an

established relationship with a recruitment agency can

make the difference between rapid and delayed service;

having a list of consultants who could provide the advice

Figure 8.4: Examples of Communications Across the Project
Boundary

69 Project Infrastructure

Software
Projects

which had not been planned for and therefore which

creates a project delay. Meanwhile, there is uncertainty

as to whether the correct versions are in use throughout

the project. Yet, it would have taken little time to install

a document infrastructure at the start. The trouble is

that it is such a simple matter that it is ignored. But its

lack leads to untold trouble.

Briefly, a document infrastructure must include at

least the following mechanisms:

•	 A definition of each type of document to be used

in the project (for example, see the list earlier in

this section);

•	 A numbering system capable of uniquely

identifying each and every document and which,

as a minimum, must define the document type,

the number of that particular document, and the

issue (or draft number);

•	 An information system which includes further

information on each document, including the

author and the date of issue;

•	 Identification of the individuals responsible for

the production (not necessarily the author), the

issuing and filing, and the signing off of the

document;

•	 A change-control procedure for each and every

type of document, including the individuals

responsible for authorizing and signing off

changes;

•	 The quality assurance method to be used for

each type of document;

•	 The filing system for each type of document,

and the individuals responsible for it;

•	 A distribution list for each type of document.

8.7	 Components Of The Technical
Infrastructure

The three most fundamental aspects of the

infrastructure for controlling the project — people,

communications and documentation — have been

discussed above. However, they do not represent the

full extent of what must be put in place in the Initiation

stage in order for the project to run smoothly. The way

also needs to be paved for smooth development of the

product, so a ‘technical’ infrastructure needs to be

installed.

For example, standards on many aspects of

the start of a project. Some examples of the great variety

of documents crucial to a project should give an idea of

its importance:

•	 Project standards, guidelines and procedures;

•	 Specifications, both for initial requirements and

for new requirements and changes to existing

functions;

•	 Plans, for example technical, resource and

quality plans, which may be at project, stage or

task level;

•	 Minutes of meetings of all types within the

project, for example project board meetings

at the ends of stages, project board meetings

for prioritization and delivery planning, and

coordination team meetings;

•	 Correspondence;

•	 Reports of various sorts, for example from the

coordination team to the project manager, from

the project manager to the project board, and

from the project manager to the customer;

•	 Design documents at various levels, for example

architectural, sub-system and module designs;

•	 Test plans for all the units of software at the

various integration stages;

•	 Test and quality assurance results;

•	 Manuals for the reference, training and

convenience of users, such as the users’ guide,

and the operation and maintenance manuals.

It is not only important to write these documents.

Let us remember that the purpose of a document is to

convey information (or to record it for possible later

conveyance). In some cases, such as with the minutes

of a meeting, the information in a document, once

correct, is fixed. With many documents, however,

the information changes, so the document needs to

be reproduced so as to convey the latest information.

Control therefore needs to be exercised not only over

the initial preparation of documents but also over their

subsequent versions and their quality [Ferraby 91].

Frequently it is discovered in mid-project that a

designer is using an out-of-date version of a specification,

or test plans have been based on an obsolete design, or

developers are working to an old version of a standard.

Then, if it is recognized (and it may not always be) that

a document control system (a document infrastructure)

is lacking, reparation takes a considerable time —

Software
Projects

70Project Infrastructure

the development of the product. These were briefly

introduced and will be described in detail in subsequent

chapters.

The following extracts from the text make some of

the chapter’s points.

•	 At the best of times, control of a software

development project is difficult. Without having

appropriate teams, communication channels,

reporting procedures, and other infrastructure

components in place, it can be almost impossible.

•	 People are capricious and individualistic and

often uncommunicative and uncooperative, but

they can be the opposites of these if the project

manager creates a supportive environment for

them to work in.

•	 If a project infrastructure is put in place early,

and the project manager invests time and effort

in maintaining it and inculcating its principles

and procedures into the culture of the project,

the probability of smooth running is greatly

enhanced.

•	 In small projects it is possible for roles to be

combined ... But it is always important to

recognize the roles which are being enacted, for

by understanding the roles we become aware of

the activities which need to be carried out if the

project is to be successful.

•	 It is not enough for the project manager to have

the information on what is wrong in the project,

he also needs both the time and the resources to

do something about it.

•	 The customer’s involvement throughout the

project is crucial.

•	 Typically, managers have different, and often

conflicting, objectives for the system.

•	 It is a fundamental requirement of a project

that all that is done within it should be towards

a common goal. If there are conflicting goals,

there is bound to be trouble.

•	 The customer council should consist of all the

senior managers who have a responsibility for

the intended system.

•	 The user coordinator should be assigned to the

project to liaise with the developers, to assist in

regular progress and quality reviews, and to

provide regular feedback to the customer.

development need to be in place in advance of work

being carried out. Experience shows that even when

company standards exist and are understood, it is often

necessary to tailor them to the needs of the project. Or

sometimes de facto standards exist and it suddenly

becomes apparent that they need to be documented —

for example, when new staff join the team, or when it

is decided to employ contract programmers. Then, if

the programmers are not provided with documented

programming standards, information necessary for

identifying and tracing programs or program versions

are likely to be omitted from the documentation. As a

project manager may not foresee all instances of such

‘extra’ work, he should not only plan the writing and

tailoring of standards at the commencement of the

project but also allow time in the plans for such work

later on.

Further aspects of the technical infrastructure to

facilitate product development which must be put in

place at the start of an ED project are so important that

separate chapters are devoted to them:

•	 The configuration management system,

including its management — see Chapter 10;

•	 A change control procedure — see Chapter 11;

•	 A procedure for prioritizing development work

— see Chapter 12;

•	 A process governing how the configuration

management system is to be used to facilitate

testing throughout development — see Chapter

13;

•	 A process for conducting and managing

maintenance — see Chapter 14.

8.8	 Summary And Extracts
Creating a project infrastructure at the initiation

stage is crucial to project success, and doing so is

one of the project manager’s most important tasks.

Then, throughout the project, he must maintain the

infrastructure and make it work. This chapter has

explained what an infrastructure consists of and what

a project manager needs to do to put it in place.

Of primary importance to project control are the

three ‘management’ aspects of the infrastructure —

people, communications and documentation — and

the chapter considered these in detail. But certain

‘technical’ aspects need also to be installed to facilitate

71 Project Infrastructure

Software
Projects

the commencement of the project, and the

monitoring mechanisms for acquiring it put in

place.

•	 Progress cannot effectively be measured in terms

of effort invested but only by the achievement of

goals. If you praise yourself for great effort, you

will find yourself doing so for far longer than

you had hoped or intended.

•	 There are some things which people will not say

openly, some which they will not say to certain

people, some which they will not document,

some which they do not think of saying, and

some which they cannot consciously say because

they are not aware that they know them.

•	 It is often the case that more useful information

is transmitted in the corridor, in the pub and

in the toilet than at meetings. Spontaneous

encounters need to be planned.

•	 Control needs to be exercised not only over the

initial preparation of documents but also over

their subsequent versions.

•	 If having a user coordinator present means

that we must put our house in order, then his

presence is invaluable.

•	 A great deal of time is wasted by substitutes

having to ‘refer back’ to their managers before

a decision can be taken, and by board members

reversing decisions taken by their substitutes at

previous meetings.

•	 The project manager must put procedures in

place to ensure that information is processed

before it is presented to the project board, that

it is presented in advance of meetings, that

quality has been assured, that results are clearly

presented and defendable, and that signing-off

procedures have been observed.

•	 Often the structure of a large team remains as

its manager inherited it — because he didn’t

think he had the authority to change it, or

because he just did not stop to consider whether

its structure was appropriate to the job in hand.

•	 The information and data necessary to

the project manager should be defined at

Software
Projects

72Initial Planning

some of the following:

•	 Many essential tasks have been omitted from

the plans;

•	 Annual leave, sick leave and disturbances have

not been allowed for (i.e., the assumption has

been made that everyone will work effectively

for five full days each week for the entire project);

•	 A project infrastructure has not been put in

place;

•	 It has been assumed that the project team will

require zero time to be assembled and to become

fully productive, and then will not change;

•	 Differences in competence level have not been

considered and training has not been allowed

for;

•	 The project manager is both inexperienced and

untrained;

The project targets are arbitrarily imposed and are a

great deal tighter than the project estimates.

Suppose we were to eliminate these problems so

that we could get the plans right, stick to them, and

end up with a satisfactory system! Would we then have

9.1	 The Issues
Creating the project infrastructure and defining

the methods of working and communication were

considered in the previous chapter, so the issue here is

the planning of the work itself. But given that ED invites

change, what confidence can we have in any plans

which we draft? What assumptions can we make about

the time it will take to do the job, or the required budget?

We certainly cannot assume that the specification will

remain constant, for this would not only contradict all

experience but also negate the benefit of ED.

In a traditional development project, planning is

specification-based. The tasks required to do the work

to meet the specification are identified, the resources

necessary to the tasks are determined, and the budget

to support both is estimated. Thus the plans are laid.

And in spite of overwhelming evidence to the contrary,

the expectation is typically that the plans will be met

— until, within an embarrassingly short time (usually

no more than a few weeks) history is vindicated and it

becomes clear that the plans will not be met. Reasons

are surprisingly consistent, and usually include as least

9
Initial Planning

73 Initial Planning

Software
Projects

of the specification than is sufficient to define the first

delivery. There is a certain logic to this, for by the nature

of ED it is expected that the specification will change

anyway. However, there are a number of reasons why

this way of thinking is detrimental to the project and to

accurate planning.

The first and most important point is that a

specification of requirements is essential to the design

of the system architecture, and the system architecture

is essential to accurate planning, lower-level design

and, thus, programming the software. Of what value is

the perfect programme if it is the wrong programme?

A partial specification is inadequate as the basis of a

sound system design. When a system is going to be very

small, and its development project of relatively short

duration, it may be justifiable to elicit its requirements

implicitly via rapid prototyping, particularly if its

purpose is mainly to meet the needs of its users rather

than to satisfy business objectives. Then the design

of the system and the specification evolve together.

But when a large system is being developed by

means of a long project, even though delivery may be

evolutionary, an architectural design on which reliance

may be placed needs to be established early in the

development process. A high-level design is of crucial

importance to the performance and dependability

of a system. It allows the main system components

to be identified and configured. If its fundamental

properties remain constant through the development

of the system, even though detail is being added to

them, system attributes such as reliability, availability,

maintainability, safety, security and responsiveness

may all be expected to benefit. For example, if at the

time of designing a database it is only partially known

what data is to be stored in it (because only part of the

system requirements have been specified), it is likely

that later, when additions are made to it, access modes

will become sub-optimum and its response times will

lengthen. Under such circumstances, it is not unusual

for a database to require redesign or, at least, ‘tuning’

Second, the requirements are less likely to change

if the specification is produced in a thorough process

in which the requirements are captured, verified and

analysed and then the specification written, quality

assured and validated. This implies the production of

a complete specification rather than a partial one, with

the perfect project? Only if we had got the specification

entirely correct and there were no changes in the client

organization’s requirements during the course of the

project — almost impossible. So we introduce ED. This

is intended to overcome the change problem; at least,

it is expected to ensure that changes are recognized

early and implemented during development instead of

after a ‘big-bang’ system has been delivered. It should

thus ensure that the final system really does meet the

customer’s and users’ requirements and that achieving

it is cheaper. But it does not solve the planning

problem. In fact, it complicates it. With ED we know

that the specification will not be stable throughout the

development project. We can be certain that if we derive

our time and cost estimates from it we will get them

wrong, even if we avoid the other problems mentioned

above.

So is there any point in planning? Should we simply

get on with the job of development without giving any

thought to how long the project will take or how much

we spend? Clearly not; that would be a recipe for chaos

in the project and conflict with the customer. But if we

plan too rigorously, and place too much confidence in

our plans, we will be disappointed and we will have

wasted time and resources. Is there a middle way?

Changing from the traditional way of project

planning to a way more appropriate to ED is in fact a

change in culture.

9.2	 Specification
To plan the project we require a good understanding

of what needs to be done. Traditionally in a

development project, the assumption has been that this

understanding must be based on a specification of the

system to be developed. And this assumption has been

shown to be well founded, for a plan based on a mere

conception of the system, or even on the results of a

feasibility study, has always been less accurate than

one based on a good specification. Indeed, experience

has shown that the accuracy of plans increases if they

are reviewed at each stage of a project, when more

information becomes available.

Yet in ED projects customers and users are

inclined to minimize the time spent on preparing a

specification, reasoning that if delivery of the system

is to be evolutionary they need not prepare any more

Software
Projects

74Initial Planning

change rapidly during the system’s development rather

than a considerable time later during its operation, and

this does not obviate the need for a good specification

at the start of development.

It is false economy, and erroneous logic, to capture

only a small part of the requirements at the start of the

project. One of the most recurrent lessons which we

have learned in software development is the importance

of a good specification prior to the commencement of

design or programming, but it is perhaps the lesson

which we most consistently ignore.

9.3	 Planning The Project
What are the constraints on the project? Do we

have to deliver a final product by a certain date?

Is there a defined limit on the budget? How is the

budget apportioned — do we have access to what we

need when we need it, or can we only spend certain

amounts at certain times? We need to be clear as to the

assumptions that we are making and the constraints

which have been placed on the project.

In software development projects, assumptions are

frequently made and financial and time constraints

imposed without reference to the system to be developed

and independently of the proposed development

project. Inevitably the assumptions are often ill-

founded and the constraints too severe. The result then

is that even a well managed project which produces a

well-engineered product may be perceived as a failure

because it exceeds the arbitrarily imposed time and

budgetary limits (consider the experiences related in

Section 3.2 of Chapter 3). Ideally, the assumptions and

constraints, made at a feasibility stage or earlier, should

be reviewed in the light of the full specification, but

this is seldom done. The specification may be used as

the basis for the technical planning of the project, but

often the project manager sees the previously imposed

constraints as fixed and impossible to challenge.

Considering the waterfall development model, it is

typical that at the end of one stage there is adequate

information to allow detailed plans to be drawn up for

the next, with plans based on less confident estimates

being prepared for the stages beyond that. Thus, at the

end of the specification stage the plans for design can

be produced in detail, with less reliable estimates being

used for planning the later stages of coding, integration,

the time spent in preparing it having a controlling

effect on later change — which can be a considerable

advantage.

Third, if the project and the system have not arisen

out of strategic planning, the project manager needs a

good specification from which to determine the scope

of the project — otherwise, how can estimates of budget

and time be made? A broad specification (one with all

or most of the requirements identified) is necessary for

determining scope. A deep specification (one in which

the requirements are defined in detail) is necessary for

determining the size and nature of the system.

Fourth, if deliveries are to be tailored to provide

maximum benefit to the customer and users, and if they

are to be on time, they must be planned well in advance.

Once the developers have got into a routine, it will be

found that deliveries N+1 and N+2 are planned and

their development commenced even before delivery N

has been made. Such planning cannot be done if the

requirements are being provided on a per delivery

basis.

Fifth, prioritization of requirements in order to

optimize deliveries can only be carried out if the

requirements have been specified.

A good specification, as thorough as it is practicable

to produce, is therefore a necessity in an ED project.

Similarly, clear and well-defined business objectives

for the system to be developed are crucial. To start

with, the specification is less likely to change if the

requirements in it are based on business objectives

which were derived from strategic planning (see

Chapter 7). Then, as changes to the requirements are

proposed, the business objectives will form the criteria

against which their validity is judged. If there are no

business objectives, there will at best be improvised

criteria of doubtful validity.

The project manager would therefore do well not

only to ensure (if possible) that a full specification

exists, but also to know the business objectives of the

system and to inquire what strategic planning formed

the basis of the project.

It could be argued that the business objectives for

the system might change. So they might, and if they

did their change would invalidate a part, perhaps a

substantial part, of the users’ requirements. But it is

one of ED’s advantages that it would respond to such a

75 Initial Planning

Software
Projects

study with those of the original feasibility

study, reviewing the costs, development time,

resource requirements, assumptions and risks

of the project. Any major discrepancies should

be examined carefully to discover the reasons

for inaccuracy, so that future estimating can be

improved.

5.	 If the new estimates are greater than those

previously defined, decisions should be taken at

a strategic level on what action is appropriate.

Options would include abandonment of the

project, authorization of the larger amounts

of time and money, and the reduction of the

specification. If it is decided to authorize the

development project, formal authorization

should now be given on a realistic basis, allowing

adequate time, budget and other resources.

I strongly recommend this process for all software

development (including ED) projects. Imposing

restrictions, usually ad hoc and without strategic

reasons, on a project before defining what needs to be

produced is a major cause of ‘failure’. So many project

failures are in fact failure to meet randomly set targets!

Randomly imposed restrictions cause demoralization

of development staff from the start, because the staff

are persistently under stress to achieve what they know

to be impossible (see Section 3.2 of Chapter 3 for a

discussion of this). They go from one missed deadline

to another, always failing, and seldom receiving

recognition for the good work that they so often do.

Remember, however, that a process such as that

described in points 1-5 above provides estimates of cost

and time for the development of a system according to

the original specification. In an ED project, it must be

assumed that the work done will not all be in accordance

with the demands of that document. Yet, for the several

reasons given in the previous section, it is important

to have a good specification and to understand what

it implies. Further, without a change in the prevailing

software development culture (see Chapter 15),

management is still likely to think in terms of the original

specification and to judge success against it.

Because there will be many changes to both the

plans and the specification, management of an ED

project will not be successful if it is purely procedural.

A rigorous adherence to plans can be as dangerous as

and validation. Knowing the tasks to be carried out

and the effort which will need to be invested in them

would allow not only a time profile for the project

to be prepared but also a budgetary profile, with an

estimate of the total necessary expenditure. One reason

why this is not often done is that the project manager

perceives his responsibility as being only to manage the

development of the system and not either to estimate

time and budgetary requirements or to question the

earlier imposed constraints on them. He simply gets on

with the job, knowing that it is unlikely to be perceived

as successful.

A process which might usefully be imposed on

all development projects within an organization is as

follows:

1.	 Given the strategic need for a system, carry out

a short feasibility study to answer any questions

related to the business objectives of the system

to be developed, such as: what is the likely

project cost? What technology should be used

for developing the system? What is the likely

development time, given certain resources?

‘What-if’ studies could be carried out to derive

answers for different scenarios.

2.	 If it is decided that the system is worth developing,

give authority and the necessary budget

allocation for a project for the development of

a specification of requirements on the proposed

system. In doing so, be particularly clear about

the business objectives for the system and any

constraints on the intended project. Identify and

analyse any risks attached to the development

project, and develop action plans to eliminate

or mitigate them. Identify the costs of the action

plans, for these must be included in the project

cost.

3.	 When the specification for the system has been

produced and validated, the authorized project

comes to an end.

4.	 Use the specification as the basis for planning the

intended development project in as much detail

as possible. The resulting plans may be referred

to as the ‘specification-based plans’. Use these

for assessing the time to develop the system

(using various resource options) and the cost of

doing so. Compare the results of this planning

Software
Projects

76Initial Planning

improbable. There is also a chance that there will

not be a great deal of change arising during the

project, but don’t count on that. Our experience

was that once offered the opportunity to request

changes, the users had to be restrained rather

than encouraged.

9.4	 Modelling The Project
Many people want a clear statement of what

development model (see Chapter 2) they should work to,

so the question often arises: What model is appropriate

to ED? Rather than present an ED model which is more

complex than valuable, I would like to offer an answer

to this question in several parts.

First, it is important not to be a slave to any model.

A model may be a guide to what to do, but it should

be quite clear what it is a model of, and it should not

be employed outside its intended use (see Section 2.5

of Chapter 2). Further, blind adherence to a model is

almost certain to lead to false assumptions being made

about its applicability. So derive benefit from models,

but employ them only as far as their benefits extend.

Second, let us consider the project as a whole.

The feedback from the customer and users following

deliveries provides opportunities for changes in

direction in the project. A major change in direction

may not often be necessary, but there needs to be re-

planning (and re-specification) after each delivery (see

Section 9.5). Re-planning offers a formal opportunity

for the reassessment of the value of what has been done,

the value of what is scheduled to be done, the options

for what might be done, and the risks associated with

the various courses of action. This process is very much

in accordance with the spiral model (see Section 2.3 of

Chapter 2). So, the course of the project as a whole can

be mapped onto the spiral model, with one loop of the

spiral being equivalent to a delivery.

At the review point in each loop, do not forget to

review the business objectives for the project, the

constraints imposed, and the assumptions made.

Remember that if a project’s objectives change, it in

effect becomes a new project. What do I mean by this? In

the first place, I have in previous chapters emphasised

the importance of the project objectives and the fact

that these should define the scope of the project. Then,

the specified requirements should lie within the scope.

having no plans, and an ED project manager needs to

apply judgement in their use — see Worsley and Lee for

a discussion of ‘third generation project management’

[Worsley 97]. Further, because of the high likelihood

of change, the project manager should understand the

strategic basis of the project. He should not only ensure

(if possible) that an adequate specification exists, but

also seek to know the business objectives of the system

and to inquire what strategic planning formed the

basis of the project. If he is unable to find an adequate

strategic basis for the project, he may not be able to halt

the project or decline to manage it, but he should then be

aware that the chance of encountering problems during

development is high. He should plan accordingly and,

if appropriate, inform senior management in writing

of his assessment of the shortcomings and their likely

results.

Next, it is important in planning to make allowance

for the requests for change which will be proposed —

both those which lead to changes and those which do

not (dealing with proposals for change which are not

implemented can be time-consuming and can upset

the best laid plans). The problem is that their volume

and complexity are unpredictable. Thus, while a good

plan is important, it is also important that it includes

flexibility and that the project manager is capable of

the judgement necessary in applying flexibility. The

organization’s culture (see Chapter 15) needs to be such

that management accepts the inevitability of change

and the need for flexibility both in planning and in the

requirements on the system.

•	 Though not based on certainty, a plan needs to

be realistic, so there are factors which the project

manager may need to consider.

•	 If the project budget was defined at the feasibility

study stage, it now needs to be reviewed in the

light of the specification-based estimate. If the

reviewed estimate is greater than the earlier

one, the project may need to be re-authorized.

Now is the time to raise the matter with senior

management.

•	 In allowing for later change, it is of course

possible that the extra work generated by

changes will be counteracted by the cancellation

of some of the requirements in the specification,

but this balance cannot be guaranteed, and is

77 Initial Planning

Software
Projects

Fifth, in order to develop a better understanding

of ED projects and to improve our estimating of them,

we should develop a profile of the effort spent on each

project activity. A model appropriate to recording and

displaying an effort profile is the matrix model (see

Section 2.4 of Chapter 2). But in its presentation in

Chapter 2, the rows were dedicated to the stages of the

project in the manner defined by (but extended beyond)

the waterfall model, and in ED these stages apply not

to the whole project but to each delivery. It is possible

to use the matrix model in two ways in monitoring an

ED project.

On the one hand, we may use it for monitoring a

delivery. A delivery may be considered to be a mini

project, but its life cycle does not merely cover an inter-

delivery period. Planning for a delivery may commence

a year or more before the delivery takes place, so

applying the matrix model to it implies dedicating

a matrix to recording the effort which is invested in

the activities over the delivery’s life cycle, including

maintenance.

On the other hand, a matrix may be dedicated

to the interval between two deliveries. This period

typically includes almost every type of activity, from

strategic planning (or at least strategic involvement)

to maintenance (after the first delivery). We notice,

however, that with three deliveries being developed

concurrently, their activities are carried out in parallel,

so each period between deliveries cannot be divided

into chronologically sequential stages, beginning with

strategy and ending with maintenance. The data being

recorded will therefore be over three life-cycle stages,

one for each delivery in preparation, and one for the

maintenance of the system in operation.

At the end of the project, a number of matrices will

exist, and these can be combined to provide information

on three types of project profile:

•	 The profiles of the life cycles of the deliveries;

•	 The profiles of the inter-delivery periods;

•	 The profile of the project as a whole.

During the project the evolving matrix can be

analysed and its value as a predictor of the future

delivery and inter-delivery period profiles of the project

put to the test. At the end of the project, the profiles

derived from the matrix will be available for inclusion

in the end-of-project report, and the total amounts

Thus, if the objectives are changed, it is almost certain

that the scope of the project is also changed, and this

must render the specification in need of review. Some

specified requirements will no longer be valid, and

some (new) requirements on the system will not have

been specified. In the second place, the objectives are

likely to have influenced both the project budget and

the time allowed for the production of the system, so

both of these targets will need review. If new objectives

relax the time within which the system is required, it

would be folly not to re-plan the project with this as a

factor. Similarly, if either the budget or the development

time is to be cut, re-planning should take place with

the project manager seeking to reduce the system’s

functionality so as to make the new project viable.

So the project board must recognize that new

objectives create a new project and ensure that the

customer does too. New requirements, assumptions,

constraints and risks may accompany the new objectives,

and these should not be accepted by default, but rather

assessed for their implications. Re-planning and re-

authorisation of new plans may also be necessary.

Third, let us consider the development of one

delivery. This is a mini project of relatively short

duration. As such, it requires the application of the

good engineering principles imposed by the waterfall

model (see Section 2.1 of Chapter 2), which is most

beneficial as a management tool. It is simple, and it

invites detailed plans for each stage (each delivery)

of the project. Based on such plans, the project board

can determine the schedule of their meetings, the

production and signing off of stage products, and the

critical points at which action would need to be taken

to keep the delivery on schedule. So the waterfall model

is useful for the management control (by the project

manager and the project board) of the development of

individual deliveries.

Fourth, let us recognize that the additions which

the V model (see Section 2.2 of Chapter 2) brings to the

waterfall model are of particular use to the developers.

It defines the successive levels not only of the system’s

description but also of its composition. It also provides

a sound basis for the testing process. Thus, the V model

is a useful guide to the details of the development of

each delivery and, as such, is appropriate for the use of

the development manager and the development team.

Software
Projects

78Initial Planning

a sound course, but also to plan the time to do so in the

period between receiving the specification and making

the first delivery. Reference should be made to Chapter

8 for consideration of what needs to be done in creating

the project infrastructure.

In addition to the ‘people’, communications and

document infrastructures, the structures and rules for

managing them also need to be initiated. The following

(which are discussed at length in later chapters) are

examples of aspects of the infrastructure which are

crucial to the success of an ED project:

•	 The structure and management of the

configuration management system (see Chapter

10);

•	 The change control system (see Chapter 11);

•	 The means of planning deliveries (see above

and Chapter 12);

•	 The way in which the configuration management

system is to be used for testing (see Chapter 13);

•	 The rules governing maintenance and the way

in which the configuration management system

will facilitate and control it (see Chapter 14).

The project manager should understand the

problems likely to arise if sound plans are not in place.

At the beginning of the project he needs to define and

install detailed control procedures, and subsequently

he needs to ensure adherence to them.

9.5.2	 Architectural Design
In the first place, a thorough high-level design

of the system needs to be prepared, verified against

the system specification, and validated against the

strategic objectives for the system. So often this system

architecture is neglected, so often it is drawn up only

sketchily, and so seldom is it validated by the customer

against business objectives. But the larger or more

complex the system, the more important it is to be

absolutely clear on its design principles.

 The architecture is of great importance. It sets the

direction of the more detailed design and it provides

the context for all future design decisions. This point is

important, for in ED proposed changes are likely to give

rise to numerous design decisions. Moreover, the high-

level design is essential at the beginning of the project to

deciding what hardware the system should be based on

and what system software and tools to use in supporting

of effort expended on the various project activities

calculated and used as guides to estimating on future

projects.

Thus, not one but four models are of value in an ED

project. Each is appropriate to a different viewpoint,

each satisfies a different purpose, and each should be

used within its constraints and to provide its particular

benefits. None should be followed slavishly.

9.5	 Planning The First Delivery
Something of huge importance in ED is to attract the

confidence of the customer and the users of the system.

It is therefore crucial that ambitious promises are not

made before there is sound evidence that they can be

kept. Too/ often project and development managers

make rods for their own backs by allowing a desire to

please to lead them into making wild and extravagant

commitments. This not only affects the development

manager, but, perhaps more importantly, it is a cause

of demotivation of the development staff, for they know

from the start that they have no chance of success. ED

offers the developers a good opportunity to please the

users by providing them with an operational system

long before they might otherwise have expected it.

If it is offered at the end of seven months rather than

six, there may be small initial disappointment, but

the advantage of early delivery has not been affected.

When the delivery is made, the users will not only be

pleased with it (if it meets their needs) but also gain

confidence in the developers for doing a good job and

keeping their word. The resulting feedback from the

users will boost the morale of the developers, which is

an unusual prize and one of great value to the project

and development managers. But the users’ confidence

will not be gained if the delivery is not made on time

or if the system is unreliable or does not include useful

functions. Adequate time must therefore be allowed for

planning and developing the first delivery and assuring

its quality.

9.5.1	 Project Infrastructure
Once the specification has been prepared, a

project manager is often tempted to ‘get on with the

development’ and neglect the crucial initiation stage of

the project. Be reminded, therefore, of the need not only

to carry out the tasks necessary to setting the project on

79 Initial Planning

Software
Projects

judgement of the project and development managers is

always required.

In the first place, the architectural design should

show the decomposition of the system into sub-systems.

Then, it must be clear how the functions (as perceived

by the users) are distributed across the sub-systems.

This understanding of how each function is catered

for in the system architecture and how it is integrated

with the other functions is crucial: when only a part of

the system has been delivered and is in operation, its

performance is usually good, but if it has been designed

and coded in isolation from the remainder of the

system, its performance is likely to deteriorate as more

of the system is provided and the operational load is

increased. A ‘system view’ from the start is important.

It is also essential in planning deliveries to know

what is possible. It would be silly for the developers

to promise to include a given (say) five functions in a

delivery if those five functions could not be developed

and tested by the resources available in the time before

the delivery. Thus, in planning a delivery there need to

be estimates of how much effort each function will take

for its development. The design should be drawn up to

whatever level of detail is necessary for this.

If an entire sub-system is to be delivered, any sub-

system with which it communicates needs to be designed

to the point where the interface between the two can

be clearly defined. Later changes to communications

software can be difficult to implement, complex to test,

and error-prone.

When one of a number of functions within a

sub-system is to be delivered, the sub-system as a

whole needs to be designed to the level at which the

interactions between the functions is fully defined and

any dependencies between them are obvious. It is not

only futile to deliver a function if another on which it

depends for its service has not yet been delivered, but

it also diminishes the confidence of the users, for they

do not have the use of a function which they had been

promised. Further, if a dependency is only recognized

when a function is already under development, there

may be a rush to design and develop the function on

which it depends in time for the delivery, and this

can lead to the delivery being late, other promised

functions not being delivered, and difficulties in testing

the delivery.

the applications. If non-optimum design decisions are

made at this stage, the repercussions can be disastrous

and extensive: development and testing can be made

difficult and inefficient, and system performance can be

unsatisfactory for the life of the system. In the extreme,

major redesign may be necessary, perhaps late in the

project, with the disposal and re-programming of a

great deal of software — and if this is necessary, what

has become of ED’s advantages of keeping the system

in line with the users’ requirements and avoiding major

re-work late in the project?

Designing a system architecture is usually an iterative

process, and the initial effort cannot be assumed to be

stable. Typically, it is only after a number of designers have

challenged each other over various (perhaps numerous)

points that the principles begin to be established. Even

then, there is usually a lengthy period of change as

ideas crystallize, deficiencies become appreciated, and

the architecture begins to be perceived as an integrated

whole rather than as a number of disjoint parts. So the

short cut of a single designer rapidly drawing up a

system architecture ‘so that the more important business

of detailed design and coding can be done’ is likely to

be a dangerous illusion. Time should be allowed for

the natural process of iterative design; the future of the

project depends on it.

The ability to plan which functions can be included

in any given delivery also depends on it. Dependencies

between functions are only likely to be identified with

confidence in the context of the system architecture,

when the way in which they will be provided can be

seen. There is no point in promising, or trying to provide,

a function which is dependent on another if the latter

has not been, or is not scheduled to be, implemented. It

can be even more disastrous if the dependency is not

even recognized.

9.5.3	 Detailed Design
It is useful not to carry out any unnecessary design

in case it has to be changed later. But how much detailed

design should be carried out in advance of the first

delivery? Certainly, any functions to be included in the

next (in this case, the first) delivery must be designed

in detail. But the amount of further design necessary

to support or substantiate the design of the functions

to be delivered varies according to the project, and the

Software
Projects

80Initial Planning

there is only one month available for the development

(including testing) of applications functions. This may

mean that a number of the most highly prioritized

functions are excluded from the first delivery. Many

project managers, in their desire to please the users,

would ignore the obvious conclusion of impossibility

and make a rash promise. But recognize the point that

has already been made above — that to prove yourself

unreliable at the start gives you an up-hill journey for a

long way into the project. So recall Chapter 3’s lesson of

saying ‘NO’ and avoid folly. If you are going to get into

trouble, do so through an unforeseeable circumstance,

not for the want of being honest.

Starting with a list of all the functions to be provided

by the system, the customer should derive a prioritized

list. Given this, the developers should estimate the

time, resources and cost of providing each function

— or each of a chosen set, which should not merely

be those with the highest priorities. Armed with this

information, the relevant parties should attend the

planning meeting. (The prioritization and planning

processes are described in more detail in Chapter 12.)

Essentially, planning the first delivery should

include the following activities:

1.	 Identifying the essential system development

to be carried out (as discussed above) and

estimating the time and effort that it will require.

2.	 Determining the date of the delivery. A number

of factors may come into force in this regard.

First, there is the political element: the customer

may desire an early delivery, or a delivery on a

particular date, in order to satisfy some business

objective. This may be affected by the time to

carry out the essential system development

work. Then there is the time needed to develop

one or more useful functions. Finally, there is

a general desire not to keep the users waiting

too long. Given that an ED project is likely to be

long, it is reasonable to expect the first delivery

after about six or nine months.

3.	 Allocating functions to the first delivery is

seldom a matter of simply choosing those of

highest priority. As will be seen in more detail

in Chapter 12, a number of factors intervene,

such as:

a) Some of the top-priority functions depend

The lesson is that the design of all sub-systems

should be sufficiently detailed prior to the first delivery

for the identification and definition of dependencies and

interfaces. The need for this will be seen to be crucial

in the context of scheduling deliveries and prioritizing

functions for delivery.

9.5.4	 Which Functions?
The early use of the system which ED offers cannot

be optimized, and may not even be possible, unless

there is a careful choice of which system functions

should be provided at each delivery. The choice for

the first delivery is particularly important, for it is an

opportunity for the confidence of the users to be won.

If the opportunity is not taken, and the users perceive

the developers as failing to deliver on their promises,

it is likely to take not one but a number of successful

deliveries to reverse the impression.

Before any functionality can be provided, the

skeletal system, consisting of the hardware and

system software, must first be designed, purchased,

installed and tested, so achieving this must be taken

into consideration when the first delivery is being

planned. It is worth explaining to the customer and

users how each of these basic components contributes

to the system as a whole, and how each is essential to

the provision of the application functions which the

users require. Remember that the users are unlikely

to understand the basic system concepts and that their

perception is simply of the developers programming

their requirements. The fact that this programming is

dependent on many other ‘back-room’ tasks, and on

the preparation of the right system ‘platform’, will be

lost on them unless you explain the point. Holding a

workshop at which this is done is a good idea; and the

prioritization of functions can be discussed at the same

forum. I cannot emphasize sufficiently the importance

of good and open communication with the users.

In planning the first delivery, the first thing to be

established is the essential work to be done in setting

up the system. This places constraints on the delivery:

clearly, if it will take six months to carry out, the

delivery cannot be made in less than that time. Further,

if there is then a need to make the delivery as soon after

that as possible, and the decision was taken to make it

after (say) seven months, simple calculation shows that

81 Initial Planning

Software
Projects

problems in ‘porting’ the software to its operational

environment. In a big-bang project, resolving

difficulties in porting the software to the target

hardware often takes longer than expected and delays

bringing the system into service, but at least they are

dealt with before operation commences. This is so

in ED at the first delivery. But after that, having to

cope with such problems on an operational system,

particularly if it needs to run for 24 hours per day, is a

major inconvenience to the customer and users and can

be the cause of bad feeling for a long time.

The case where the target system of an ED project is

based on distributed or replicated hardware “is also one

for caution. Economy may be made by providing the

users with a reduced system pending full functionality,

with the developers having the use of one part of

the target hardware (say one computer) on which to

develop the applications software. The danger is that

until the software is delivered, it has never been tested

in an environment equivalent to its operational one.

This suggests that its performance cannot have been

fully validated. It would not be sensible to suggest that

such an economy should never be made; the needs of

and constraints on every project must be addressed in

context. However, project and development managers

should recognize the difficulties which ED imposes on

the use of hardware in some cases. They should identify

and assess the risks in their particular situations and

advise the project board accordingly at an early stage.

9.6	 Planning Later Deliveries
9.6.1	 The Second and Third Deliveries

If the time to the first delivery has had to be longer

than the customer would have liked, and some highly-

prioritized functions could not be delivered, it may

be prudent to plan the second delivery for only a

short time after the first (say, one month) and perhaps

the third after a similar interval so as to provide an

effective system. But then deliveries should settle into

a regular pattern. While there is often a desire on the

part of users to receive new functions and to have their

proposed changes implemented quickly, there is also

the need to deploy the development staff effectively

and for them to work efficiently. The structure of the

development organization needs to be designed for

the long term, and this implies creating a flow of work

on other functions which have not yet been

developed;

b)	 The effort available does not allow more than one

or two of the first five functions to be developed

in the time, but, given that, there is then surplus

effort which could be spent on developing one

or more other small functions.

Thus, a balance must be struck so as to use the

available effort efficiently while optimizing the

effectiveness of the functions which are provided.

Sometimes it is worth developing a function of

relatively low priority because it would require only

a small amount of effort and it could be put to use

immediately. Similarly, it might be possible to identify

a number of ‘fast-track’ functions which would offer

immediate (even if not high-priority) value and which

are quick to build.

At a planning meeting, the customer and users

are likely to see things from one perspective and the

developers from another. The project manager needs

to maintain the balance by perceiving the advantages

to the users of the developers’ necessities, and vice

versa. The good relationships which should be fostered

throughout the project play a strong role in the planning

of meetings.

9.5.5	 Use of Hardware
In many waterfall model projects, the developers

are able to use the target system hardware as their

development machine. The disadvantage of this is

that when the system has been delivered, maintenance

must be performed on the live system — or the system

must be taken out of service for maintenance. As an

alternative, development (and later maintenance) may

be carried out on a machine which is not the target

hardware, with the software transferred to the target

hardware on delivery.

In ED the development machine cannot be forfeited

when the first delivery is made. At that point, perhaps

less than 10% of the applications software has been

developed. So the provision of a development machine

must be planned and budgeted for at the start of the

project.

It is preferable for the development and target

hardware and system software to be the same. Then,

it may reasonably be expected that there will be no

Software
Projects

82Initial Planning

validation requires three weeks, it is clearly impossible

to have a delivery period of less than three weeks. As

the system grows, the validation time increases. It may

in some projects be deemed acceptable to take short

cuts, for example by revalidating only new or changed

units of code, but even then the validation time can

be substantial. In choosing a delivery periodicity, this

factor should not be ignored.

A period of about three months between deliveries

in a relatively large project is about as short a

periodicity as should be aimed at. Less time than that

is unlikely to be effective and puts too high a pressure

on the developers. Indeed, as the project progresses, the

pressure is likely to build up anyway. The users can be

persuaded that a three-month interval is reasonable if

the developers communicate effectively with them and

if relationships are good. The onus is on the project and

development managers to ensure that they are. Then,

the great test is to meet the delivery dates and be seen

to be successful developers and reliable people. The

most effective means of fostering good relationships

are reliability, openness, and honesty.

9.6.3	 The Planning Process
Once the first delivery has been made, development

work may include:

•	 Functions as per the original specification;

•	 Change to what has already been delivered;

•	 New requirements due to a better understanding

of what the system can offer and what is needed;

•	 Corrective maintenance.

As the second, third and fourth of these categories

of work only arise once the system is in service, and

as their content is increased with each delivery, there

must be a re-planning process after every delivery.

This includes a reassessment and re-prioritization of

the development work and a review of the plans for

the forthcoming deliveries. This process is described in

Chapter 12.

Having determined what is to be included in a given

delivery, it needs to be announced to the users. The

customer representative is involved in the planning

process and will already know, but the users need to

be informed. There should be a set means of providing

this information, as this not only increases the chance

of most of the users receiving it but also is likely to

through the team (as suggested in the previous chapter)

rather than, say, having everyone writing code so as to

maximize a certain delivery.

Planning of the second and third deliveries cannot

wait for the completion of the first. It will be seen in

the next chapter that the plan of a delivery must have

been completed long before the previous delivery was

made. The development of functions should be planned

to minimize duplication of effort, so there needs to be

a one-year rolling plan. This should include the bulk of

the deliveries involved, with allowance for the addition

of new requirements and rearranged priorities. Further,

unforeseen changes crop up, and some changes

proposed by the users also need to be implemented at

short notice.

At the time of planning the first three deliveries, the

number of requests for change following the first two

cannot be predicted. It may be reasonable for the plans

for the second delivery to be based almost entirely on

the original specification, because changes based on

the first delivery will take some time to be approved.

But although the plans for the third delivery are drawn

up even before the first is made, they should include

a significant allowance for new requirements and

changes. The temptation is to maximize the number

of original functions included in it, and then, when

important changes are approved, to try to include them

as well. This leads to failed plans, broken promises,

and a loss of the customer’s and users’ confidence. As

development manager, be fair to yourself and leave

some slack in early plans. It is of course a good idea to

identify a number of functions which could be included

in the delivery if only few changes are called for. Then

you can astonish the customer and users by providing

more than was promised. But do not overreach yourself

and your staff.

9.6.2	 The Effect of Validation on the Delivery
Period

One factor which particularly affects the periodicity

of deliveries is the time and effort required to test each

new version of the system. As will be seen in Chapter

13, this can be considerable, and too short a periodicity

increases the proportion of development time spent on

validation, which cannot be carried out even partially

in parallel with other development activities. If

83 Initial Planning

Software
Projects

behaviour by developers during delivery.

9.7	 Summary And Extracts
This chapter has given guidance on the planning

which should be carried out in the early stages of an

ED project. In particular, it has addressed the issues of

specification, project planning, modelling the project,

and delivery planning. The following extracts offer a

sample of the points made in the chapter.

•	 The accuracy of plans increases if they are

reviewed at each stage of a project, when more

information becomes available.

•	 A specification of requirements is essential to

the design of the system architecture, and the

system architecture is essential to accurate

planning, lower-level design and, thus,

programming the software.

•	 A broad specification (one with all or most of

the requirements identified) is necessary for

determining scope. A deep specification (one in

which the requirements are defined in detail) is

necessary for determining the size and nature

of the system.

•	 One of the most recurrent lessons which we

have learned in software development is the

importance of a good specification prior to the

commencement of design or programming,

but it is perhaps the lesson which we most

consistently ignore.

•	 Even a well managed project which produces a

well-engineered product may be perceived as a

failure because it exceeds arbitrarily imposed

time and budgetary limits ... Randomly

imposed restrictions cause demoralization of

development staff from the start, because the

staff are persistently under stress to achieve

what they know to be impossible.

•	 A rigorous adherence to plans can be as

dangerous as having no plans, and an ED project

manager needs to apply judgement in their use.

•	 A model may be a guide to what to do, but it

should be quite clear what it is a model of, and

it should not be employed outside its intended

use.

•	 If a project’s objectives change, it in effect

becomes a new project ... New requirements,

generate interest.

We learned, and confirmed time after time, that

communicating with users and keeping them informed

of plans and progress is not only sensible but also

essential. It is so easy for developers to become slaves

to their deadlines and neglect to communicate with

users. It is also easy to announce plans which do not

materialize, and this antagonizes users and loses

their confidence. The way to avoid neglecting the

users is to impose discipline and formally arrange

regular meetings. The way to obviate failure to fulfil

plans is not to cease to announce plans, but to have

a method of planning and managing development

which maximizes the probability of fulfilling the plans.

Having a configuration management system allowed

us to plan and manage development effectively, and

this is described in the next chapter.

9.6.4	 Practical Issues at Delivery
Each project offers its own difficulties to the

developers in making deliveries, and project and

development managers need to identify the relevant

issues and determine their solutions. Only then can they

plan the installation of the new versions of the system

with confidence. A few brief examples are offered here

to indicate the sort of problem which might arise.

The first is the simple issue of downtime. If the users

have come to rely on the system, even if it is not defined

as needing to be ‘non-stop’, they are reluctant to lose

it while the new version is being installed. Although

they may have to lose it, it is not acceptable for the

developers to demand the right to the easiest possible

option. Negotiation is necessary.

 This leads to the issue of the time of day when

the delivery is made. If there is a genuine need for

continuous system operation, it may have to be made

between midnight and dawn. This then leads to the

questions of whether the customer is represented on

site during installation and whether users carry out

acceptance testing. Arrangements must depend on the

particular circumstances, including the nature of the

system, the way in which previous deliveries have been

conducted, and the relationship between the customer

and users and the developers. I should mention,

however, that good relationships during development

can be destroyed by arrogant or un-thoughtful

Software
Projects

84Initial Planning

•	 The design of all sub-systems should be

sufficiently detailed prior to the first delivery for

the identification and definition of dependencies

and interfaces.

•	 We learned, and confirmed time after time, that

communicating with users and keeping them

informed of plans and progress is not only

sensible but also essential.

•	 The way to obviate failure to fulfil plans is not to

cease to announce plans, but to have a method

of planning and managing development which

maximizes the probability of fulfilling the plans.

10.1 Issues
Software configuration management concerns the

assumptions, constraints and risks may

accompany the new objectives, and these should

not be accepted by default, but rather assessed

for their implications.

•	 Be reminded of the need not only to carry out

the tasks necessary to setting the project on a

sound course, but also to plan the time to do so.

•	 A thorough high-level design of the system

needs to be prepared, verified against the system

specification, and validated against the strategic

objectives for the system.

•	 The short cut of a single designer rapidly

drawing up a system architecture ‘so that the

more important business of detailed design and

coding can be done’ is likely to be a dangerous

illusion.

85 Software Configuration Management

Software
Projects

development must continue, so the second delivery

should already have been planned and its development

commenced. It would not be feasible for the entire

development team to work simultaneously on one

delivery. As each delivery must go through the stages

of planning, specification, design, module coding and

testing, integration and testing, and system testing, the

scheduling of deliveries could not be controlled unless

a system of parallel working was in place. Having only

one version of the system under development at any

given time would lead to the following disadvantages:

•	 Staff skills could not be used optimally, and

often not even efficiently;

•	 There would be a danger of too much new

software being included in a delivery, and this

would increase the difficulty and duration of

debugging and the uncertainty of meeting

delivery dates;

•	 If delivery N is not commenced until delivery

N-l has been delivered, adhering to the agreed

delivery schedule becomes more difficult, and

giving the customers and users early information

control of software at all stages of its life cycle, from the

coding of individual modules, through the integration

of successively larger sub-sets of the system, to an

operational system. Its purpose is to minimize errors,

facilitate access to the software and the correction of

errors, and ensure, among other things, that:

•	 Testing is methodical and thorough;

•	 Every unit of software, at whatever level of

integration, is always traceable;

•	 Every version of every unit is identifiable;

•	 Storage of every unit is controlled;

•	 Access to every unit of software, at whatever

level of integration, is facilitated;

•	 Changes are controlled;

•	 Systems are built only of the units and sub-

systems which have been tested together;

•	 Documentation of all levels of development

exists, is controlled, and is accurate and current.

In any development project, software configuration

management is important. In an ED project it is doubly

so, and it is more complex. With the first delivery,

the system becomes operational. At the same time,

10
Software Configuration

Management

Software
Projects

86Software Configuration Management

standardize on a tool before selecting your development

system, it is likely that you will have to use your tool

off-line. This has the disadvantage that it requires great

discipline on the part of the developers to record every

change to the software at the time it takes place, and

it loses one of the great advantages of a configuration

management tool — that it is an integral part of the

development environment and thus provides both

documentation and control of the development process.

It is therefore important for a configuration

management system (CM system) to form the basis

of the development environment and to provide a

software library within which software at all stages of

development is stored. It should provide configuration

management facilities automatically, thus relieving

the developers of the responsibility and the overhead

of separate configuration management activities and

avoiding the errors which are so likely to result from

this. In other words, it should impose constraints on

the developers and thereby guarantee control of the

software.

For this, it is necessary to define the development

process, step by step, and then to tailor the CM system to

facilitate the process. A tool must support a method, and

if you have not defined the method, a tool is more likely

to be a hindrance than a help. It is rather like taking the

time to define the problem to be solved and to prepare

the requirements specification before commencing

development: if this is not done, the project is likely to

be ineffective. In the case of configuration management,

the ideal would be to take the following steps, in order:

•	 Define the development procedure, including

documentation standards;

•	 Document it;

•	 Ensure that all staff know and understand the

procedure;

•	 Tailor the proprietary CM system to support the

procedure;

•	 Define a procedure for the management and

use of the CM system to ensure that it cannot be

circumvented;

•	 Write standards in which the rules for the use of

the CM system are embodied and train staff to

understand them and adhere to them;

•	 Develop any software tools necessary for

implementing the CM system and embody the

on the content of a delivery becomes precarious.

So even from before the first delivery, there will

always be more than one version of the system in

existence at any given time, one live and one or more

under development. As the composition of each delivery

needs to be defined and its software identified from

that of all others, it is important to design a method

of configuration management and a staff organization

which allow the concurrent development of more

than one delivery, optimize the use of staff, and allow

accurate planning of the content and dates of deliveries.

Not only does keeping track of what is being done

depend on it, but so does testing and the efficiency of

development. According to the International Standards

Organization, in its guidelines on quality in software

[ISO 91], a configuration management system should:

•	 Identify uniquely the versions of each software

item;

•	 Identify the versions of each software item

which together constitute a specific version of a

complete product;

•	 Identify the build status of software products

which are in development or which have been

delivered and installed;

•	 Control simultaneous updating of a given

software item by more than one person;

•	 Provide coordination of the updating of multiple

products in one or more locations as required;

•	 Identify and track all actions and changes

resulting from a change request, from initiation

through to release.

Our problem was not in finding a configuration

management system, or in using it to control the first

delivery (as in a waterfall model project), but rather in

tailoring it and in designing the necessary procedures

for controlling ED. The following descriptions are

therefore concerned with these aspects rather than with

the fundamentals of configuration management.

10.2	 The Need For A Development
Procedure

There are many configuration management tools to

aid developers in controlling their software. However,

like all software tools, they are hardware dependent

— or, at least, system-software dependent. Thus, if you

87 Software Configuration Management

Software
Projects

of different versions of the system, nor for many of the

other aspects of ED control which are essential and

which will be described below. We needed to tailor the

CM system, design a procedure for its operation, and

define rules for its management.

Essentially a CM system is a software library with

mechanisms for uniquely identifying and documenting

the software in it, constraints on the way in which

the software is accessed and changed, and a means

of facilitating the integration of the software units in

building the system. We recognized that the goal of

tailoring the CM system was to make it support our

development process, so the first step was to design

this. The following description reports on the way in

which we tailored and used the CM system, but it also

implicitly describes

our development

process.

We decided

to allow for five

concurrent versions of

the system at various

stages of development

and we partitioned the

software library so as to define five levels (see Figure

10.1) as follows:

•	 Level 1, the

Test (T) level, at which module development and

testing were carried out;

•	 Level 2, the Integration (I) level, at which the

modules were integrated to form sub-systems

and these, in turn, were integrated to form the

system, with thorough testing taking place at

each stage of integration;

•	 Level 3, the System (S) level, at which the system

was validated;

•	 Level 4, the User (U) level, at which the system

was made available for the customer to test prior

to bringing it into service;

•	 Level 5, the Live (L) level, at which an exact

replica of the in-service system was stored

for examining problems and carrying out

maintenance.

A working area was also provided at each level,

partitioned from the system storage area so that changes

made in the working area would only be integrated into

rules in them.

At the top of the list is the working procedure for the

development process. Everything else is built around

this. However, while it would be nice for the development

manager to devise an ideal method of working and then

purchase a configuration management tool to support

it, it is unlikely that the right tool would be found. It is

more likely that the working procedure will depend, to

some extent, on the capabilities of the support tool. Thus,

the first step is to consider the hardware and system

software which have been chosen for the development

system, and to select a configuration management

support tool which is compatible with them. Then

the development procedure should be defined in the

light of the capabilities of the chosen CM system, and

the steps in the above

list followed. It is an

iterative process.

If the development

procedure is ignored

by the developers,

software control

becomes difficult, if

not impossible, and

considerable inefficiency is incurred. The project

manager and development

manager therefore need to

ensure that the procedure is publicized, understood,

universally accepted, and adhered to. They must

provide training if necessary (particularly in large

project teams). The CM system, procedures and rules

which we evolved and which experience showed to

work well are described in the next section.

10.3	 The Configuration Management
System

10.3.1	 Fundamentals
A CM system which was compatible with the

development system’s hardware and system software

was purchased to form the development environment

and controlled library for the software. While the CM

system would have been adequate for controlling a

waterfall model development, it had clearly not been

designed with ED in mind. It catered for any number of

versions of any number of units of software, but it did

not adequately cater for their integration into a number

Figure 10.1: The Software Configuration Management System Architecture

Software
Projects

88Software Configuration Management

passed all the appropriate tests.

10.3.2	 Software Progress
Each level of the library possessed its own database

which was tailored to the needs of storing and testing

the software at that level. However, initial software

development was carried out outside the library.

Figure 10.2 shows that an individual programmer

constructed a module of software to a specification,

and tested it, using test specifications and test data

previously prepared by the module’s designer, until he

was convinced of its quality. He then transferred it to

the T level (the lowest level) of the library, where it was

subject to spot checks by a member of the integration

and test team (see Chapter 13). Test reports were

prepared and copied to both the development manager

and the programmer, and time spent by the latter on

the re-work of faulty software units was recorded as a

quality-related cost, as was the time taken for re-testing.

A unit of software did not have a standard, or even a

maximum, length. Some years before, when using third

generation languages (3GLs, e.g., COBOL, PASCAL), we

attempted to limit the length of a module of software to

50 lines of code. Although this seemed good practice,

and it minimized the number of logical errors within

modules, it increased the number of interfaces and thus

the complexity of integrated units. When we defined

our CM system for ED, we were using 4GLs as well

as 3GLs, and such a standard became impractical, as

a program required far more lines of 4GL than 3GL

code. With experience, we found it most practical

to commission a programmer to build a function of

the system (rather than merely the lowest level of

the system intentionally and after thorough testing.

A CM system which caters for a number of versions

of the system can easily be used to provide the levels

defined above, simply by creating an appropriate

means of numbering the units of software. That might

be referred to as an ‘implicit’ system of control, with

notional boundaries between the levels. We decided,

however, to implement an ‘explicit’ control system by

creating what appeared to the developers as physical

boundaries between the levels. The transfer of a version

from one level to the next required not only the usual

configuration management controls but also a contract

between the developer who wished to make the transfer

and the manager who controlled the level to which

the software was to be transferred. This apparently

physical library structure turned out to be invaluable.

It was easily understandable to developers who did not

perceive their software as being identifiable only by

a number, but who came to know exactly where their

software was, why it was there, and what was required

for it to gain transfer to the next level. The developers

also understood clearly the need for the constraints

that were imposed on the control of their software,

so they were almost invariably observant of the rules.

This was a huge advantage; fewer breaches of the rules

meant fewer instances of re-work and therefore greater

efficiency.

Our design of the library thus made the CM

system the basis of our development environment and

integrated it with our development management. In

this, it became both the primary development tool and

a means of imposing discipline on the development

process. Further software tools were then developed

to move software units and systems upwards from one

level to the next. Two rules were made, and the tools

were designed to support them:

1.	 No downward movement was allowed. This

ensured that configuration records were not

corrupted by indiscriminate changes and

forced all changes to come from below. It should

be noted, however, that changes made in the

course of corrective maintenance needed to be

reflected in the lower levels, and the mechanism

for achieving this is described in Chapter 14.

2.	 No skipping of levels was allowed. This ensured

that no item of software advanced until it had

Figure 10.2: Initial Development and Testing Done Outside the
Main CM System Library

89 Software Configuration Management

Software
Projects

When effectiveness had been proved, the system was

moved to the U level where it was made available to the

customer for pre-delivery testing, though the customer’s

staff did not always choose to avail themselves of the

opportunity to carry it out (see Chapter 13 for a further

discussion of this).

When it was time to prepare the system for delivery,

it was passed from the U to the L level. Preparation

time varied depending on the size of the system. On

one project, where the system grew to almost a million

lines of code, the time required was between one and

two weeks. During this time, the code for the units of

the system was generated, and the system was built

and compiled (the method of storage of units was by

original version plus successive changes — see Section

10.3.3). Then, each module used was recorded, with its

version number and details of its links to other units, so

that a complete configuration profile was created for the

delivery. This was then documented and stored.

Next, a number of confidence tests were carried out

to confirm functionality, check the new features of the

system, and ensure that the system was that which had

been validated at the S level. Finally, at the appointed

date and time, the system was delivered to site. This was

done via a direct link to each system in the field over

which we not only delivered software but also applied

controls to the system when this became necessary for

maintenance.

10.3.3	 Version Control and Storage
At each level of the library, there was a control

program which recorded the arrival and presence

of software units. For a new arrival, it recorded its

name and gave it a version number; for a unit of the

same name as one already encountered, it compared

the new code with the old. If there were changes, it

recorded them and allocated an updated number to the

new version; if there were none, it did not change the

version number. Having thus attended to identification,

the control program organized the storage of the unit.

What it actually stored were the original version and

the successive changes made to it, each with its version

number. This had the advantages that storage space

was saved and previous versions were always readily

obtainable, which was helpful when a new version

caused serious problems. However, there was also a

module), while encouraging him to decompose this

into as many modules as possible. Thus a programmer

coded, compiled and tested small modules, and then

integrated them into a function which he tested before

introducing it into the T level of the library. On one

particular project, the average length of transaction

process functions written in a 4GL was about 2000 lines

of code. 3GL functions averaged 300-400 lines of code,

many being interface communication functions.

When the unit had been proven to conform to its

specification at the T level, it was passed to the I level where

it was integrated with other units of software, written

by the same programmer and others. The integration

was carried out according to design plans, and each

integrated sub-system was tested by the verification and

validation team, using test specifications and test data

prepared earlier by the designers. Again, test reports

were compiled, filed under the reference of the delivery

in preparation, and copied to the development manager

and programmers. Again, re-work and re-testing at the T

and I levels, due to programmer error, were recorded as

quality-related costs.

At these two levels, where it was intended that

most program errors should be detected and corrected,

the modules and sub-systems were compiled with

a debugger. This created an overhead of greater

compilation time, but it provided the facility to step

through the code, instruction by instruction, in search

of an elusive bug. The debugger was seldom needed at

the next three (system) levels, and was not used in the

first instance. It was called into play, however, at the

expense of considerable processor time, when a serious

intermittent bug was present.

Successive levels of integration testing were carried

out at the I level until, finally, the whole system for

the delivery in preparation had been tested. This was

then passed to the S level. Until now, tests had been

designed to find bugs in the system and to verify that

the software units conformed to their designs. Now, at

the S level, validation tests were carried out to prove the

functionality of the system as a whole and, thus, that the

right system had been built. In other words, the product

was not being tested for accuracy in the translation from

a preceding stage of development, but for conformity

with its original specification of requirements (see the

V diagram of Figure 2.3 in Chapter 2).

Software
Projects

90Software Configuration Management

and T-level tests, it is necessary to find and correct the

fault at the S level before re-introducing the changed

modules at the T level, testing them, and passing them

back up through the levels. Thus, it should be possible

to access modules at all levels, via the working areas

already mentioned and shown in Figure 10.1.

At the same time, however, there is the need to guard

against two programmers making concurrent changes

to a module (when the first new version to be replaced

in the library would be overwritten by the second). The

facility to avoid this is provided in most CM systems

and takes the form of controlling access to the software.

One means of doing so is by the use of two control

commands, which we might call ‘FETCH’ and ‘HOLD’.

The FETCH command might be defined to allow

a copy of a software unit to be taken from the library

but not replaced. A programmer could thus take a copy

into a working area of storage, for example to test its

integration with another unit or to experiment with a

modification to it, but any changes made could not be

introduced into the library.

The HOLD command might be defined to allow

a copy of a unit to be taken from the library for the

purpose of change and to hold the unit in the library

frozen until it is returned (or until a time-out). When

the unit is taken from the library, the system requires

the programmer’s name and password to be inserted.

The system validates the programmer’s right to make

changes to the software and holds that unit, at that level,

for that programmer. No one else is then able to HOLD

the unit until the programmer has either replaced it,

with the same or a changed version, or cancelled its

HOLD status. A time-out may also be included to guard

against an infinite delay in the event of the programmer

going sick or failing to reset the unit’s status for some

other reason. In the event of a time-out, the return of

the unit (changed or unchanged) must be precluded

— to make a change, the programmer would need to

apply another HOLD.

Changes to the system are thus possible under any

circumstances, including emergencies, but they are

always controlled. However, in controlling changes,

attention must also be paid to the maintenance of

historical documentation and the ease of access to

earlier versions. Because a change may be made at any

level, a simple version number, which accompanies a

serious disadvantage, which was that at each level the

software needed to be both rebuilt and recompiled

before it could be tested.

At the T and I levels, this was not too much of an

overhead, but it certainly was at the S, U, and L levels,

where the new version of the complete system was

under consideration. A resulting further disadvantage

was that, following system testing at the S level, the

system was rebuilt twice more (at the U and L levels)

before being delivered to site. A great deal of care

therefore needed to be taken to ensure that the system

built and compiled at the L level was exactly that which

was tested at the S level. We thus developed a tool (a

program) to check this. It made a record of the modules

included in the S-level system, with their version

numbers. It was then passed up with the system. At the

L level, it was activated to test the newly built system

against its own stored record, and it listed and printed

out discrepancies. Of course, this program was stored in

the same way as other modules and was not delivered

to site as part of the system.

This method of storage was designed to save space.

With a system as large as ours, it would not have been

possible to store successive applications in their entirety.

As shown above, the penalty was a time overhead. As

the number of historic versions, and thus the number to

be stored, increased, so did the time overhead, as each

version could only be constructed from Version 1. We

therefore decided to rationalize this by eliminating the

earliest versions. Study of the pattern of our access to

earlier versions led us to conclude that we were safe

in retaining only four previous versions — which

represented a year in time. Recreating the current

system therefore involved applying a maximum of

four sets of changes to the stored version, instead of a

number that increased with time.

10.4	 Making Changes
A bug may be detected in the software in any of the

five levels of the library. While the policy should be for

the defective module to be corrected at the lowest level

of its existence (see Chapter 14 for expansion on this),

there may be a need to access a module at any level,

and sometimes to make an immediate correction. For

example, if an application at the S level is faulty, but each

of its component modules successfully passed their I-

91 Software Configuration Management

Software
Projects

system grows with each delivery. Thus, if testing is to

be thorough, its duration must increase, and after a few

deliveries it may take several weeks, or even months.

The nature, the thoroughness, and thus the duration

of validation testing is therefore a prime consideration

in the planning of the frequency of deliveries. It is not

recommended that weekly, or even monthly, deliveries

be attempted for a large system.

The overhead in S-level testing is high, and this is

increased by the effort in any pre-delivery testing which

the customer may chose to carry out at the U level.

At the L level, there is the overhead of building and

compiling the system for delivery to site, of creating the

configuration profile, and carrying out confidence tests.

Then, on site, there is the overhead at the time of

installing the new software. Even if this is only at one

site, it may be non-trivial; if it is at several sites, even

travelling time can be extensive. Although deliveries

were made over links, we went to site to guide the users

through the changes from the previous version, and on

some occasions to train them in the use of new facilities.

In all cases, at any given site, normal operation must

be ceased before the new version of the software can

be loaded, so the timing and cost of system down-time

must be considered. This may be in direct financial

terms (if, for example, the system controls a production

process), in terms of goodwill and market share (e.g., if

the system provides a direct service to customers), in

terms of a backlog of work (e.g., if the system provides

a service to staff within the company), or in terms

of risk (e.g., if the system carries out performance

monitoring). In our case, the system was an essential

tool to operational staff and was required 24 hours per

day. Thus, not only did we have to minimize down-

time, but we also had to carry out installation at times

of least activity — such as in the foreday — and this

added to the inconvenience and cost of deliveries.

When normal operation has been suspended, any

databases on the system must be dumped to disk for

security. This allows their reconstruction in the case

of corruption during the testing or operation of the

new version of the system. When the copies have been

taken, the new software is loaded, and appropriate tests

are carried out to ensure that the system is functioning

correctly. These are not system tests, but confidence tests

for the developers and comfort tests for the users. It is

software unit as it is passed up the levels, would not

guarantee uniqueness of change identification. For this

reason, a unit does not take a version number with it as

it goes from one level to another. Instead, it acquires a

‘generation number’ at each level. When it enters a level

for the first time, it is allocated generation number 1,

and each time it is changed at that level, either because

of a change made at that level or because it is passed

up from a lower level with a change, the generation

number is incremented.

Thus, a software unit has a unique identity at each

level. If its history is required, the generation numbers

at each level, along with the dates and times of their

creation, are printed out and assembled in chronological

order.

10.5	 Overheads In Deliveries
Although we always planned deliveries carefully,

we did not at first make them at a regular frequency.

We soon learned, however, that it is important to be

regular, and experience led us to a three-month period.

If we left it longer than this, the users thought that

nothing was being done for them; if we tried to be more

frequent, we forfeited efficiency because the overheads

became too great.

The overheads took two forms. The first consisted of

activities in the development environment, the second

of activities on site. In development, there is a

continuing need for modules and sub-systems to be

built and tested (at the T and I levels), so these tasks

should not be considered as overheads. However, this

is not so at the system (S, U and L) levels.

If there is only ever going to be one delivery (as in

the waterfall model — see Chapter 2), validation tests

at the S level could be expected to be carried out only

once. In ED they must be carried out for each delivery;

moreover, they must be tailored to each delivery. Thus,

for the first delivery, it must be clearly understood

which aspects of the requirements specification are

being met so that the test specifications can be designed

to be thorough, but no more than appropriate. For

subsequent deliveries, not only are there new tests, but

many of the tests for the previous delivery will no longer

be appropriate (because of changes to the functions

being tested) and must be abandoned or replaced. As

development proceeds, it is usually the case that the

Software
Projects

92Software Configuration Management

the higher level is ready to receive the software; 2.	

The manager of the lower level should document a list

of all the units to be transferred, with their version

numbers, along with a statement (a guarantee) that they

had been thoroughly and successfully tested according

to the pre-designed test specification and test cases; 3.	

The manager at the higher level should check the

list, ensure that all, and only those, units which were

expected (i.e., necessary for the delivery in question)

were included, and then agree to accept the transfer

and sign it off.

Under this procedure, any discrepancies between

what was expected and what was offered could be

resolved before the transfer was made. Reference to the

plan for the delivery was almost invariably sufficient to

reveal which units were missing or surplus. The content

of units did not need to be checked at this stage. If a

unit was present and of the correct version number, it

was fair to assume that the changes made to it had been

those specified. If they were not, responsibility was in

any case clearly identified. We found that this procedure

and the clearly defined management responsibility for

the integrity of the levels, and the peer pressure which it

implied, were sufficient to ensure harmonious, accurate,

and timely transfer of the software up the levels.

10.7	 Concurrent Development
It was mentioned in Chapter 9 that a rolling one-

year delivery plan was maintained. At four deliveries

per year, this amounts to plans (of varying degrees

of detail) for the next four deliveries. Given that some

system functions are large and will require considerable

development effort and time, it is certain that software

modules of the next two, and perhaps the next three

deliveries, will be under concurrent development. At

the T level, this does not pose a problem, for the modules

are developed in isolation and are not obviously a part

of any given version of the system. But it is preferable

not to attempt to move the modules for a given delivery

to the I level until its predecessor has been moved up

to the S level. It would be possible to fool the system

into accepting them by appropriate numbering, but

this then places an onus on the I-level manager to make

the necessary adjustments prior to each system being

passed to the S level. ‘Keep it simple’ is an appropriate

maxim in this case. To minimize confusion, the I-level

most important for the users to be comfortable with the

new system, and although they should already know

what to expect of it, the developers should spend time

with them at each delivery — perhaps a considerable

time — taking them through the changes, training them

in the use of new screens, menus, and applications,

and, generally, making sure that they understand and

approve of the new system. With this type of attention,

which helps them to understand the system, they are

almost certain to approve of it, particularly if their

questions of why certain hoped-for improvements

weren’t implemented are answered sympathetically.

Without such attention, even if understanding is

easy to achieve, approval may be withheld. Never

forget that while the customer representative is

involved in system-level decisions, the users are not,

and they should not be taken for granted; nor that a

developer may have more contact with some users than

the customer does; nor that public relations is part of

everyone’s job, including a developer’s.

10.6	 Managing The Configuration
Management System

Each level of the CM system library should be

the responsibility of a named manager. In our case,

we allocated the responsibilities for the levels to the

team leaders whose roles we considered to be most

appropriate to them (the structure of the development

team is discussed in Chapter 8 and shown in Figure

8.3). Thus, the L level was under the jurisdiction of the

support team leader, the U and S levels were under the

system test team leader, and the I and T levels under the

design and coding team leader.

The main responsibilities at each level were

maintaining the integrity of the software within the

level and ensuring that it was not advanced to the

next level until it had passed all appropriate tests and

the manager of the next level was ready to receive it.

Leaving the manager of a lower level to pass software

up when it was ready rather than when the manager of

the higher level was ready to receive it was found to be

risky. In most cases, all went well, but when a problem

occurred there was likely to be a disagreement over

what had in fact been transferred. Our solution was to

lay down a procedure which decreed the following: 1.	

A transfer should only take place when the manager of

93 Software Configuration Management

Software
Projects

to ensue. The project manager must identify them and

see that they are designed, developed and brought into

effect at the earliest possible time.

10.9 Summary And Extracts
This chapter has explained the importance

of a configuration management (CM) system to

evolutionary delivery projects. It described a CM system

which resulted from experience and was tailored

until it provided a sound environment for software

development and the control of five concurrent versions

of the system.

Not only are CM system rules required for achieving

adequate control, but also management procedures for

governing the system. These were explained.

If ED is to be successful, a project manager needs

to introduce a CM system and the associated rules and

procedures at the initiation stage of the project. The

system described in this chapter provides a guide to

what is necessary and a model on which he can build.

The following extracts from the text make some of

the points of the chapter.

•	 A tool must support a method, and if you have

not defined the method, a tool is more likely to

be a hindrance than a help.

•	 A CM system is a software library with

mechanisms for uniquely identifying and

documenting the software in it, constraints

on the way in which the software is accessed

and changed, and a means of facilitating the

integration of the software units in building the

system.

•	 The transfer of a version from one level [of the

CM system] to the next required not only the

usual configuration management controls but

also a contract between the developer who

wished to make the transfer and the manager

who controlled the level to which the software

was to be transferred.

•	 Our design of the library made the CM system

the basis of our development environment and

integrated it with our development management.

It became both the primary development tool

and a means of imposing discipline on the

development process.

•	 Time spent on the re-work of faulty software

manager should not accept any modules which are not

defined as part of the next delivery.

10.8	 Overheads In Effort
If a CM system is to be effective, development not

based on it should not be tolerated. If all staff are to

use the CM system, they need not only to be aware of

it but also to understand it and the advantages which

it offers them. They need to know how to use it and to

have access to guidelines on it and to the procedures

and rules to be observed in its use. They also need to

know the management structure based around it.

In order to achieve these aims, a great deal of effort

may need to be expended in writing the guidelines (or

standards) on the use of the CM system, in documenting

the procedures to be observed and the forms to be

used in achieving signed-off transfers of software, and

in training the staff in all aspects of the CM system.

Frequently the effort involved in such activities is

ignored or forgotten when project plans are prepared,

with the result that when such tasks are carried out (not

far into the project) it becomes clear that the plans will

not (cannot) be met. This is failure on the part of the

project manager to put a suitable project infrastructure

in place (see Chapter 9), and it is hugely demoralizing to

staff, who from the start are faced with a project which,

as they see it, cannot be successful.

A remedy applied by many project managers is to

deny the staff the necessary training on the grounds

that there is not sufficient time and that, anyway, ‘they

don’t need training for such simple procedures’. But

in the absence of training, who instructs them in the

simple procedures? They are only simple when you

understand them. This remedy leads to staff resenting

the fact that their training is denied and becoming

indifferent to the procedures in question, and this

leads to a decline in moral, efficiency and effectiveness.

Saving on necessary training is false economy.

The need for developing project-specific standards

and procedures, not only for a CM system but

also for many other aspects of the project (such as

programming), should be recognized from the outset.

Further, such standards and procedures are not a luxury

but a necessity. They should be considered as part of

the project infrastructure, and if their development and

implementation are left too late, problems are certain

Software
Projects

94Software Configuration Management

in system-level decisions, the users are not, and

they should not be taken for granted.

•	 If a CM system is to be effective, development

not based on it should not be tolerated. If all staff

are to use it, they need to understand it and the

advantages which it offers them.

•	 The need for developing project-specific

standards and procedures, not only for a CM

system but also for many other aspects of the

project (such as programming), should be

recognized from the outset.

units was recorded as a quality-related cost, as

was the time taken for re-testing.

•	 In ED they [validation tests] must be carried

out for each delivery; moreover, they must be

tailored to each delivery.

•	 The nature, the thoroughness, and thus the

duration of validation testing is a prime

consideration in the planning of the frequency

of deliveries. It is not recommended that weekly,

or even monthly, deliveries be attempted for a

large system.

•	 While the customer representative is involved

95 Change Control

Software
Projects

to be handled during the development of the system.

They may have a variety of causes, among them:

•	 Operational changes;

•	 New or altered business objectives;

•	 Changed environmental conditions or working

practices;

•	 Organizational changes;

•	 A desire by users for more efficient working;

•	 New or amended legislation or international

agreements or standards relating to the system’s

functions or data;

•	 Errors in the original requirements;

•	 A newly defined strategic scope for the project;

•	 New ideas which seem good at the time.

If all RFCs were accepted for development, they

would form a body of work unlikely to be completed,

and if given high priority would preclude further work

on the original specification. They therefore need to be

controlled and vetted, taking into consideration their

value to the users, their value to the business, their

conformity to strategy, their priority, and the estimated

effort, cost and elapsed time of their implementation.

11.1	 The Issues
The most significant advantage of ED is its offer of

an early opportunity to recognize the need for change

to a system and its requirements. If the offer is acted on,

the perennial problem of building a system which does

not meet its users’ requirements can be minimized.

Necessary for this, however, is a persistent and critical

assessment of the efficiency and effectiveness of the

functions already delivered and a careful control of the

requests for changes to be made. Feedback from users

can be expected to provide evidence of efficiency, but

the managers who sponsor the project should assess

the effectiveness of the delivered functions in meeting

business objectives.

ED thus allows the potential for a system to keep pace

with changes to its requirements. Early modification

can be made to software already delivered, and,

importantly, original requirements now obsolete can

be cancelled, thus saving the effort and cost of their

ineffective development.

The price for this advantage is the plethora of

requests for change (RFCs) which may arise and have

11
Change Control

Software
Projects

96Change Control

on deliveries already made, of changes in the

customer’s organization or operational practice

or business objectives, or simply through

making corrections to the specification.

3.	 Making modifications to software already

provided which conformed to its specification.

Although the RFC results from experience

with the software, it is in fact a change to the

requirements on the system.

End users are often not familiar with the original

specification, and being frustrated by what they

perceive to be a failure of the system to support

them as they would now like, regard the

discrepancy as a system fault. Overcoming this

demands close liaison between the developers

and the users.

Modifications in this category may be large

or small, but they frequently take the form of

changes to screen lay-outs, data fields, or menus.

An example of a change whose origin was

beyond anyone’s control was one which resulted

from a new international standard. Having to

adhere to the standard required a change to

the size and format of a certain data field which

was a part of numerous records on the system

— and the changes had to be made by the

internationally agreed date of implementation.

4.	 Correcting delivered software which was

shown not to conform to its specification. This

constitutes software maintenance, the process

for which is described in Chapter 14, but it

does not involve a change to the specification of

requirements and so is not considered an RFC

(this is important for accounting purposes).

Categories 2 and 3 result from changes either to the

specification or the system as delivered so far. Category

1 does not involve change, and category 4 consists only

of corrective amendment. A definition of a request for

change is therefore based on categories 2 and 3 and

states that ‘A request for change (RFC) is a formal,

documented request, authorized by the customer

representative and the strategic representative, for

a change to the specification of requirements on the

system. The change may be to requirements not yet

satisfied or to requirements already met on the system so

far delivered; it may be to cancel stated requirements, or

While the great advantage of ED is that it allows

and encourages early change, if this change is not

controlled, it can have a disastrous effect on a project.

Indeed, control of change is a significant component of

the control of the project. In this chapter, the procedures

which we developed for controlling RFCs are described.

An adjunct to these procedures is the prioritization of

work, and this is described in the next chapter.

11.2	 Requests For Change
In discussions of the specification of requirements

in Chapters 3 and 5, the inevitability of change was

emphasized, and the previous section proposed

that uncontrolled requests for change can lead to an

uncontrolled project. To impose control on change,

it is first necessary for the project and development

managers to define what an RFC is and how it should

be handled, and to publicize this to all participants

in the project. We found that a satisfactory definition

could not be limited to what an RFC is, but needed

also to state clearly what it is not; and that defining

how it should be handled meant documenting a formal

procedure. Before stating a definition of an RFC,

however, it is worth examining its possible sources, and

also the sources of work which should not be defined

as an RFC.

Once the first delivery has been made and brought

into operation, there are four categories of work to be

carried out on the software.

1.	 Continuing development as per the original

specification of requirements. When the

specification is signed off early in a project, it is

deemed to be the basis of design and validation

of the system. Thus, in the absence of requests

by the customer to make changes to it or to the

software already delivered, all development

is according to the original specification. This

category of work, therefore, does not contribute

to RFCs.

2.	 Developing functions which are newly

specified, having not been included in the

original specification, or which were included

but are now re-specified. Such work is the result

of an RFC to the specification. This category of

development work may arise in many ways,

for example, as the result of users’ feedback

97 Change Control

Software
Projects

documentation. Their use should be subject to quality

assurance, for procedures alone do not make a good

project; it is a culture in which their value is recognized

and which drives their use which is the telling factor.

But procedures are indispensable to consistency in

achieving both efficiency and high standards. For

managing change, there needs to be a formal procedure

which includes vetting, documentation, quality

assurance, and authorization. The procedure described

below was proved by experience and could be tailored

to meet differing needs.

11.3.2	 Initial Documentation
It can be expected that in ED the most prolific source

of RFCs will be the users of the delivered functions.

With experience of the system, they discover that the

specified requirements are not quite what were needed,

for example: the information now required to execute a

certain function is distributed over two screens and it

would be better if it was all on one, that once you become

familiar with the system the use of menus is inefficient,

and so on. Most users’ RFCs are perfectly reasonable,

but in many projects there would be no remaining

development effort to implement new functions if they

were all to be implemented. It is therefore necessary to

vet them and only implement those which are proven

to be essential.

Early in our projects we were inclined to accept RFCs

direct from users. As we found ourselves submerged in

them, we began to be discerning over what we accepted.

But that had two detrimental effects: our relationship

with the users began to deteriorate because they saw

us as denying them the changes which were important

to them, and our overload did not subside as we were

now spending a great deal of time in vetting the RFCs.

We came to realize that the users’ managers and the

customer representative should be the ones to decide

which changes should be implemented. We therefore

insisted on their involvement.

As will be seen below, changes which are to be

implemented by the developers need to be formally

specified. But given that many if not most users’ RFCs

are unlikely to be accepted for implementation, it would

be a waste of effort to prepare detailed specifications of

all of them. Yet, if they are to be understood and vetted,

they need to be documented. So the first stage of the RFC

to add entirely new requirements. Maintenance changes

to correct the system so as to meet its specification are

not RFCs.’

11.3	 A Procedure For Handling
Requests For Change

11.3.1	 Preamble
It is not suggested that the procedure described

here is the only one possible. However, the procedure is

not merely a theoretical proposal but a method which

was developed as the result of need and experience

and which was used and found to be effective. It was

developed evolutionarily over a period of time, until

finally it seemed to cover all the aspects of change

control we found to be important.

At the beginning of the project, there were in place

a set of change control principles which had been

devised for traditional big-bang delivery projects.

While these formed a good basis to build on, they did

not ensure the degree of change control essential to

ED. Three deficiencies come to mind. The first is that

they contained no mechanism for strategic control over

proposed changes. The second is that if the effort or

cost of the change was judged to be less than 10% of

the estimated cost of the stage of the project, the change

did not require the approval of the project board, and

this led to the developers being swamped by requests

for small changes which may not all have been essential

and which together may have cost more than 10% of

the stage budget. The third deficiency was that the only

procedure for vetting RFCs before they were presented

to the project board was the automatic approval of

those thought to be insignificant in cost (less than

10% of the cost of the stage, as mentioned above). The

project board, therefore, was forced to spend a great

deal of time in discussion of the mer8 (apply the its of

RFCs. It was decided that the customer representative

needed to carry out a greater degree of preparatory

assessment. This initial change led to the evolution of

new procedures which were formally documented.

Their operation was monitored by the project board

and improvements were incorporated iteratively.

It is recommended that in each project the project

board should make a minuted decision to adopt and

abide by clearly defined procedures which should then

become a formal and integrated part of the project’s

Software
Projects

98Change Control

authority to proceed to development and would not

require initial documentation and vetting. They would

normally advance directly to the ‘formal specification’

stage of the procedure (see Section 11.3.6 and Figure

11.1).

11.3.3	 Initial Vetting
Very often, users’ managers remain remote from

projects. Neither are they the end users nor are they

sufficiently senior to be the system’s customer or

even to be involved in the planning or authorization

of the project. Unless the senior managers are careful

to include them, they are in danger not only of being

out of touch but also of feeling alienated. They are

then reluctant to contribute to the project: they are

already busy and, as they see it, they have already

been excluded, so why should they take gratuitous

steps to be of assistance when they may not even be

appreciated? This of course is a worst-case situation,

but it is surprising how frequently it comes about.

Yet, it is the users’ managers who are best placed

to determine the users’ needs, to support the users in

fulfilling them, to vet the users’ proposed changes to

the system, and in doing so to coordinate them and

eliminate redundancy; also to step back from the detail

in which the users themselves are immersed and help

the users to distinguish value-adding changes from

those which are merely convenience-adding.

The next stage of the change control procedure

should be the vetting of the users’ RFCs, preferably by

the users’ managers. If users’ managers are to carry out

initial vetting the customer representative must involve

them in the project, help them to understand what is

required, and work with them to achieve it. Ideally, the

manager of each user should vet that user’s RFCs in

the first instance and then pass them to the customer

representative who has overall responsibility for the

vetting and for coordinating the RFCs. Responsibilities

at this stage should be to:

•	 Ensure that all RFCs passed on to the customer

representative are value-adding;

•	 Ensure that no RFC is contrary to working

practice or would undermine management’s

control or monitoring procedures;

•	 Eliminate RFCs which are trivial or unnecessary;

•	 Remove redundant RFCs;

procedure (see Figure 11.1) is ‘initial documentation’.

This should identify:

•	 The system to which change is requested;

•	 The proposed change (and the specific

requirements in the original specification, or

previous RFCs, to be affected by it, if these are

known);

•	 The reason for the change;

•	 The benefits of the change;

•	 Any requirements in the original specification,

or any previous RFCs, not yet implemented,

which would be obviated by the change (if these

are known);

•	 The date by which the change is required (or

preferred).

Initial RFC documentation is often made by users

not accustomed to writing and, in some cases, not

good at it. Yet, if the documentation is to be correctly

interpreted and not cause added work through being

ambiguous, too brief, or too casually written, it must

conform to a minimum standard which should be

defined within the project. Such a standard should

include the document’s source details, such as author,

date, and version number.

The above refers to users’ RFCs. Certain RFCs, such

as those demanded by the business because of changes

in business objectives, new product lines, international

agreements, and legislation, will already carry strategic

Figure 11.1: A Procedure for Handling Requests for Change

99 Change Control

Software
Projects

coordinator, but the procedure should be such that the

customer representative cannot shed the responsibility

and is held liable for problems caused by flaws in the

execution of the task.

When the user coordinator (or the customer

representative) is unable to understand an RFC, or when

there are recurrent problems, RFCs may be returned

to their source for more complete information, or the

user coordinator might visit users or their managers for

discussion of the proposals or of the shortcomings.

11.3.5	 Strategic Concurrence
When coordination is complete, the remaining

RFCs are submitted to the strategic representative for

approval.

The purpose of this is not to examine whether

the proposed change is a good one, for the strategic

representative may not have the detailed knowledge of

the system or its application to make such a judgement.

Rather, it is to ensure that it is within the business

objectives for the system. The requirements in the

original specification required strategic concurrence to

show that they lay within the strategically determined

scope of the project and that they contributed to the

business’ objectives, rather than merely meeting end

users’ requirements. If RFCs are not subjected to the

same scrutiny, it would be possible for a project which

commenced on a strategically approved path to be

diverted into becoming an expensive irrelevancy.

Given that there are numerous changes during an

ED project, the customer needs to recognize the need

for strategic participation throughout the project, rather

than merely at the beginning.

11.3.6	 Formal Specification
RFCs should under no circumstances be

communicated to the developers other than in

documented form and with the appropriate authority.

Further, they should be written with all the care

associated with the original specification: experience

suggests that more rework is carried out as the result of

doing the wrong thing in the first place than of doing

the right thing wrongly — in other words, as a result of

ineffectiveness rather than inefficiency. If effectiveness

is to be achieved, there must be a clear specification

of what needs to be done, which is always the first

•	 Combine RFCs which are complementary;

•	 Ensure that all RFCs passed on to the customer

representative are documented according to the

standard for initial documentation;

•	 Keep the users informed of what action is being

taken and explain why RFCs have not been

approved.

If this is to take place satisfactorily, the users’

managers must understand the project, recognize

its benefits to them, and feel a part of it. It should be

the customer’s organization which brings this about,

but, as observed above, this does not always (or even

often) occur. Thus, although the users’ managers are

not normally within the jurisdiction of the project, the

project manager and development manager should

be conscious of the need to attract their interest and

acquire their participation from the start. The project

manager should encourage the customer representative

to include them in project planning and not to by-pass

them in carrying out requirements capture with the end

users. The development manager should not by-pass

them in forming relationships with the users, holding

meetings with them, or disseminating information to

them.

11.3.4	 Coordination
From users’ managers, RFCs are submitted to the

customer representative who has the task of:

•	 Recording and numbering them;

•	 Ensuring that all necessary information is

present;

•	 Detecting and eliminating duplication;

•	 Ensuring coordination so that common themes

or requirements are identified;

•	 Determining any repercussions of the RFCs, for

example whether they would obviate the need

for a previously specified requirement.

Some or all of these tasks may already have been

carried out by the users’ managers. Indeed, the

customer representative may define the initial vetting

so that it includes them. But the issue here is not so

much who performs the task but who formally has

responsibility for it. So the customer representative

performs at least a quality assurance role. It would

be normal for the customer representative to delegate

the coordination and checking of the RFCs to the user

Software
Projects

100Change Control

11.3.8	 Quality Assurance
Document quality is something that not many

mangers seem to give time to. On the one hand they

think it is not very important, and on the other that it is

easy to achieve. Yet, whenever we inspect a document,

even one previously inspected, we find numerous

errors, at least some of which would have resulted in

inefficiency or ineffectiveness later on in the project.

In the case of a specification, a defect could have

considerable effect if not detected until the software is

in service. By the ten-to-one rule, if it would cost one

unit of currency to repair a specification defect found at

the specification stage, ten times more to fix if the defect

is found at the design stage, a hundred times more if it is

found at the software build stage, and a thousand times

more at the operations stage. Given that the corrective

action must always commence at the specification and

work through to where the defect was found, this rule

is not far from the truth.

It should therefore be a part of the change control

procedure that all specifications are subjected to

quality assurance, and I recommend the use of Fagan’s

Inspection [Fagan 76, Redmill 88]. As in all inspections,

one of the inspectors should be an intended user of the

document, which in this case implies a system designer.

This provides an added viewpoint to the inspection,

it gives the development team early warning of

the proposed change, and it ensures that they can

understand it.

Responsibility for achieving quality assurance

should rest with the customer representative, though

it is usual for the inspection to be arranged by the

user coordinator. The inspection report should show

that the document is acceptable before the customer

representative submits the specification to the next

stage of the process.

11.3.9	 Feasibility Study
The RFC should now be sent by the customer

representative to the development manager with a

formal request to estimate the effort and cost necessary

for implementing the change. Whereas this formal

approach is essential for maintaining the integrity of

the project and for budgeting and accounting, it should

not be the first that the development team hears of

the proposed change. As suggested in the previous

principle of quality.

Time and effort are saved by not preparing

specifications for RFCs until they have been approved

and given strategic concurrence, but then it is important

for them to be documented formally. Some believe that

ED implies a ‘let’s-get-on-with-it’ attitude and that formal

documentation is a hindrance to ‘getting things done

quickly’, but experience shows that a certain formality

improves the chance of having to do something only

once. Continuous ‘doing’ without pausing to plan what

should be done incurs unrecognized inefficiency.

So the RFCs which have achieved strategic

concurrence, including those which have their origins

at business level, need formally to be specified (this

implies formality in adhering to standards and does

not imply the use of mathematical language).

Normally the responsibility for the authorship of

RFC specifications rests with the user coordinator, but

procedures could call for some or all of the work to be

done by the users’ managers or the users themselves.

The author needs to take care with those attributes

which are important to a specification — correctness,

completeness, consistency, traceability and non-

ambiguity. Moreover, the specification should not be

treated as an independent document but should be

written as an adjunct to the original specification, with

clear statements of how it relates to it, of which original

requirements are to be changed, of which should be

replaced, and of which otherwise affected.

11.3.7	 Verification
On completion of an RFC specification, the user

coordinator should seek its verification by its initiator

— or initiators, if the RFC is a composite of a number of

others. If the RFC has been changed intentionally since

its initial proposal, perhaps by its initiator’s manager,

this will need to be explained to and discussed with the

user who initiated it. But there are also occasions when

the intention of the original proposal has been corrupted

during the several stages since it was first drafted. Then

the RFC should be redrafted and task, trouble must

ensue. Analysts, designers and programmers a decision

taken on whether the alterations are such that the

newly drafted RFC must be resubmitted for strategic

concurrence.

101 Change Control

Software
Projects

that the change is desirable. However, even now it may

be turned down because of its cost, its impact on the

system, the manpower or elapsed time necessary for

implementing it, or because of any of these combined

with the fact that it is of such low priority that it would

never be likely to be implemented (although the latter

reason should have been detected earlier).

In coming to a decision, the customer representative

is briefed by the user coordinator who should have

discussed the matter within the coordination team

(see Chapter 8). Further, if there is doubt as to whether

to approve the RFC, he would normally consult the

manager of the user who submitted the request in

the first instance. In the end, however, the customer

representative must make the decision.

If the customer representative decides to cancel

an RFC which originated for business rather than

end-user reasons, it is usual to take the decision in

consultation with the strategic representative, for there

may be reasons for the proposed change of which the

customer representative is not aware. In a few cases,

when a change originates from, or would affect a senior

customer, the customer council (see Chapter 8) may

need to be involved in the decision.

When the decision to proceed has been taken, the

customer representative should send the specification

of an approved RFC, with a request to implement it, to

the development manager, with a copy to the project

manager. As the development team will be aware of all

RFCs (having carried out feasibility studies on them)

and may have made provision for some of them in

appropriate delivery plans, they should also be advised

of which RFCs have been cancelled. The RFC is also

added to the customer representative’s prioritization

list (see the next chapter) so that its scheduling can be

determined.

11.3.11	 Remarks on Formality
The above procedure has laid some emphasis on

formality. Observing formality can save time rather

than waste it. But formality does not need to be staid.

It is possible and desirable to maintain friendly and

cooperative formality. In many parts of this book the

importance of good human relationships is stressed.

With the users and developers communicating

regularly and harmoniously, it is usual for all RFCs to be

section, one of the design team would almost invariably

have inspected the document. Moreover, it would be

exceptional for the development team not to have been

consulted, in the early stages of the proposal, for their

advice on the difficulty, cost, planning and wisdom of

the change.

It might also be suggested that the feasibility study

should be carried out before formal documentation,

so that time is not wasted on documenting those

RFCs which are not to be proceeded with. However,

two things mitigate against this. The first is that the

developers should have been consulted informally at

an earlier stage, with the result that the vast majority

of RFCs to get to this stage will in fact be implemented.

The second is that it is not until the RFC is documented

formally that it is fully specified in all its detail. Accurate

estimates of the time, cost, difficulty and effects on the

rest of the system of implementing it can only be made

in the light of this.

So the developers carry out a feasibility study, whose

manpower and cost are recorded for later accounting

(for payment by the customer). Many proposed changes

are trivial, and their studies are brief. Others require

studies of considerable depth in order to estimate the

effort needed for the change and to deduce any effects

on other parts of the system and thus any resulting

secondary work. In all cases, the feasibility study report

to the customer representative should contain:

•	 The manpower required to make the change;

•	 The cost of this manpower;

•	 Any capital costs involved, for example, the

upgrade or purchase of new hardware;

•	 An assessment of any changes in staff allocation

or skills necessary to implement the change;

•	 The predicted impact of the change on other

parts of the system, for example, on the response

times of other functions;

•	 The impact of the change on external matters,

such as the timing or content of outputs, or on

work practices.

11.3.10	 Decision on Whether to Proceed
With the above information, the customer

representative is responsible for deciding whether to

commission the change. The fact that an RFC has gone

through the procedure described in this section means

Software
Projects

102Change Control

and defined independently of staff organization, never

to fit in with it. The organization may then be adjusted,

if necessary, to facilitate the procedures. Too often,

quality is forfeited by forcing working practices to

conform to an obsolete and inappropriate organization.

11.5	 The Users’ View
Those most directly affected by the efficiency and

availability of a system are usually its on-line users. It

is they who are inconvenienced by poorly formatted

screens, slow response times, and long-winded menus,

so it is they who submit the majority of the RFCs. Yet,

from a business point of view, it is often their RFCs

which are seen as being of lowest priority. Thus, many

of the changes which users think of as being essential

to their work are cancelled or delayed.

The problem is often not that the business view

prevails, but that the users don’t know of it. They are

usually of lower rank and not involved in strategic

decisions, so if they do not receive feedback on the

RFCs which they have submitted, they may be forgiven

for thinking that nothing is being done to help them.

Further, if they are not advised of the procedures

described in this chapter, they blame the developers for

any delays.

Given this, we took a number of initiatives (also

mentioned in other parts of this book) to create a good

relationship with our users and to share information

with them. When we explained such issues as how

many RFCs we had to deal with, the concept of value to

the business as well as to the end user, the need for and

the methods of vetting RFCs, the prioritization process,

and how we planned and developed deliveries, the

users were immediately more supportive of us and

keen to be patient over their own demands. Human

beings are naturally reasonable; if approached

sympathetically, with openness and honesty, they

tend to respond likewise. But if their past experience

is of a contrary approach, their previously conditioned

response may prevail for a time. Change occurs when

trust is developed.

In most companies that I have dealt with,

users’ managers do not adequately play the role of

intermediaries between their staff and the project,

nor between their staff and their business as a whole.

If there was better communication between managers

discussed between them before the formal procedure is

invoked, and for all parties to be aware of their progress.

Formality does not imply, and should not be taken to

imply, either inefficiency or a draconian regime. But it

is often assumed to be based on inflexibility and, alas,

it often turns out that way unless it is well managed,

and unless it is applied within an appropriate culture.

Management, therefore, needs to be aware of the type

of culture which exists, to be alert to the type which is

required, and to attend to the business of developing

and nurturing it.

11.4	 Documentation Of Requests For
Change

All RFCs submitted are recorded and their

documentation retained in the project files. For those

which are implemented, the ideal might seem to be for

the regular production of a new version of the whole

requirements specification to incorporate all RFCs to

date. But this requires dedicated staff effort, which is

in short supply in most projects. Our solution was to

mark-up the original specification of requirements so

that it contained references to the RFC specifications.

Our procedure for doing this was for one member of

the design and coding team to carry out the marking-

up and another to check and sign it off. On the one

hand, this was an expedient, but on the other, it carried

a significant advantage which was that, in keeping the

RFC specifications separate, we not only saved effort

but also achieved an audit trail of changes which was

much clearer than would have been possible had they

been built into new versions of the original specification

of requirements.

However, the system design documentation needs

to be updated when each modification is made. Except

for emergency maintenance modifications, no changes

should be made to the software until its specification

has been dealt with as described above and its redesign

is complete. In our case, this was not only facilitated but

also ensured by our staff organization. As described in

Chapter 8, the development team was organized so that

the flow of work was in accordance with good practice.

As a single person was never charged with specifying

or designing the software units which he was to build,

he could never carry out these tasks out of sequence.

Processes and procedures should always be identified

103 Change Control

Software
Projects

it would be possible for a project which

commenced on a strategically approved path

to be diverted into becoming an expensive

irrelevancy.

•	 The customer needs to recognize the need for

strategic participation throughout the project.

•	 More rework is carried out as the result of doing

the wrong thing in the first place than of doing

the right thing wrongly.

•	 A certain formality improves the chance of

having to do something only once. Continuous

‘doing’ without pausing to plan what should be

done incurs unrecognized inefficiency.

•	 Whenever we inspect a document, even one

previously inspected, we find numerous errors,

at least some of which would have resulted in

inefficiency or ineffectiveness later on in the

project.

•	 It is usual for all RFCs to be discussed between

them [users and developers] before the formal

procedure is invoked, and for all parties to be

aware of their progress.

•	 .Formality does not imply, and should not be

taken to imply, either inefficiency or a draconian

regime ... Management needs to be aware of

the type of culture which exists, to be alert to

the type which is required, and to attend to the

business of developing and nurturing it.

•	 In keeping the RFC specifications separate

[from the original specification], we not only

saved effort but also achieved an audit trail of

changes.

•	 Processes and procedures should always be

defined independently of staff organization,

never to fit in with it ... Too often, quality is

forfeited by forcing working practices to conform

to an obsolete and inappropriate organization.

•	 If there was better communication between

managers and staff, including interpretation

and discussion of the business’ objectives ... and

particularly including feedback on how, and

how well, the staff’s output contributes to the

business’ objectives, I am convinced that morale,

efficiency and effectiveness would all improve.

and staff, including interpretation and discussion of

the business’ objectives and the strategic decision-

making process, and particularly including feedback

on how, and how well, the staff’s output contributes to

the business’ objectives, I am convinced that morale,

efficiency and effectiveness would all improve. When

staff are neglected, or not well informed, they feel

demoralized and their work suffers. Sympathetic

human contact is the first step in the remedy of this.

Honest and open feedback is the next. Feedback is a

fundamental engineering principle and the basis of

control, and receiving early feedback on the operational

system is the great advantage of ED. We can gain

advantages by providing feedback to our staff. We need

to be more concerned to do so, placing their work not

only in the local context, but in the business context as

well.

11.6	 Summary And Extracts
This chapter first defined ‘requests for change’ in

terms of what they are and what they are not, and then

presented a step-by-step procedure for handling them.

Responsibilities for the various steps are clearly placed

on the project participants defined in Chapter 8.

The described procedure was developed in

evolutionary projects, improved in the light of

experience, and found to work well. It could be tailored

to form the basis for the control of change in other

projects.

The following extracts do not describe the procedure,

but they make some of the chapter’s points.

•	 Feedback from users can provide evidence

of efficiency, but the managers who sponsor

the project should assess the effectiveness of

the delivered functions in meeting business

objectives.

•	 If change is not controlled, it can have a

disastrous effect on a project.

•	 The project board should make a minuted

decision to adopt and abide by clearly defined

procedures which should then become a

formal and integrated part of the project’s

documentation.

•	 If RFCs are not subjected to [strategic] scrutiny,

Software
Projects

104Prioritization of Work and Delivery Planning

but with the system already being partially in service,

communication of them is stimulated early rather than

at the end of the project.

The first delivery is planned early in the project

and must include the hardware and system software,

the applications features essential to a basic system (for

example, a man-machine interface, help modules, and

certain menus), and some other functions (as discussed

in Chapter 9) which are deemed to be of high priority.

Similarly, the planning of the second delivery (and

perhaps the third) is also at least partially based on

the prioritization of the requirements in the original

specification.

When the first delivery has been made, the

prioritization process needs to become dynamic.

The system becomes an entity that must change with

each delivery, and each delivery invites change to the

requirements on the system as a whole, both to those

parts already in service and those to be developed. As

RFCs arrive, re-prioritization is essential if the most

needed functions or changes are to be implemented

earliest, if non-value-adding requirements are to be

12.1	 The Issues
The first delivery in an ED project is a turning print,

the point at which the project meets a fork and sets out

in two directions — further development on the one

hand and operation and maintenance on the other. It

is also the point at which the rate of change within the

project increases significantly.

In providing customers with service earlier than

otherwise, one of the purposes of ED is to invite review,

with change if necessary, so that the specification of

requirements, and thus the system, may continue

to reflect the real needs of the customers, the users,

and the business as a whole, rather than merely the

requirements which were expressed in the specification.

It is well known that users only begin to understand

their needs when their system is delivered to them,

and that they are then stimulated to seek changes to

it, so change is almost certain to ensue. But not only

the users but also ‘the business’ may seek change, and

there may be many strategically inspired changes to

the system. Actually, many of the business-originated

requests for change (RFCs) would have arisen anyway;

12
Prioritization of Work

and Delivery Planning

105 Prioritization of Work and Delivery Planning

Software
Projects

quality assurance tools on the system, and there may be

development work which the project manager wishes

to be done, for example to introduce a measurement

function as the basis for monitoring progress. Thus,

these four parties are all necessarily involved in the

prioritization process. It may be noticed that they

comprise the project board (see Chapter 8), so their

meeting to prioritize functions and to plan deliveries is

in fact a project board meeting with a special purpose.

One possible means of prioritization would be to

hold a single meeting of the four parties for the purpose.

But the responsibilities for the process are not equally

divided among them, and this is unlikely to be an

effective use of time. A great deal of preparatory work

should be done prior to such a meeting, particularly

by the customer and strategic representatives. If the

preparatory work has not been completed satisfactorily,

debate at the meeting may far exceed decision, and

decisions may be conditional on the agreement of

others not present. A formal procedure is therefore

necessary to ensure that the meeting, when held, is

effective. The paragraphs below reflect a procedure

which evolved over time and which experience showed

to work well. As will be seen, effectiveness depends on

the final meeting of the four participants covering both

the prioritization and the delivery planning processes.

12.2.2	 The First Draft of the New Prioritization
List

As prioritization is intended to be for the benefit

of the customer, it is the customer representative

who should carry the responsibility for initiating the

process. The end of the process is the prioritization and

delivery planning meeting which should produce a

new prioritized list which is agreed by all four parties.

The beginning of the process is the preparation by the

customer representative of the first draft of the new list.

The main source of amendments to the existing

prioritization list usually consists of the users’ RFCs

which have been through the approval process and

have been passed to the development manager for

implementation. These are already in the possession of

the customer representative. There is another source of

changes on the customer’s side of the project, and this

consists of any RFCs initiated by the customer at a senior

level. Such RFCs are the responsibility of the strategic

identified and cancelled, if deliveries are to be planned

effectively, and if development effort is to be optimized.

Moreover, it is important for the developers not to

have the responsibility for prioritization. While they

can contribute to the process, it should be those who

desire the system’s functionality who determine the

relative importance of the functions.

Prioritization does not need to be a complex matter,

and it is not difficult to devise a satisfactory procedure.

However, too often it is not carried out, and when it is,

it causes problems because the procedure is not formal

and the wrong persons are involved. Experience leads

to two recommendations: first, that re-prioritization

should be carried out at the planning stage of each

and every delivery, and second, that there should be

a formal procedure for it. The subsequent sections

in this chapter describe a procedure (see also Figure

12.1) which is designed to identify and involve the

appropriate participants and define their roles and

interactions.

Whereas prioritization is a principal part of the

planning of a delivery, it will be seen that the delivery

plan depends not only on the prioritized list of functions

but also on the logistics of carrying out the intended

development work.

12.2	 Preparing The Prioritization List
12.2.1	 Preamble

From the time of planning the first delivery (see

Chapter 9), there exists a prioritized list of all functions

which have been specified for development. What is

discussed here is therefore the process of adding to

and subtracting from this list and re-prioritizing its

contents. The list as it exists must be the starting point

of the process.

As the customers have commissioned the system

and will use the functions provided by it, they have

the prerogative, and indeed the responsibility, to

prioritize their requirements. Within the project, this

responsibility lies with the customer representative.

At the same time, some requirements on the system

are defined by the business for strategic reasons, so

the strategic representative will also have the right

to negotiate, or even to impose, priorities. There may

also be work which the development manager needs

to carry out, for example, to implement testing tools or

Software
Projects

106Prioritization of Work and Delivery Planning

out after each delivery, the project manager should

formalize the process and set deadlines for completion

of each of its stages.

12.2.3	 The Strategic Representative’s
Responsibility

The strategic representative on the project has two

main tasks. The first is to ensure, during the RFC

vetting process (see Chapter 11), that only strategically

justifiable development is approved. The second is to

see that all strategically important requirements are

completed on time.

The strategic representative’s responsibilities in the

prioritization procedure are therefore to bring to the

process any new RFCs introduced for strategic reasons

and to ensure that they are scheduled for timely

delivery. This role may be seen to consist of two parts.

The first is to prioritize the strategically-based RFCs

relative to other functions on the prioritization list; the

second is to ensure the appropriate delivery scheduling

representative and will be discussed in Section 12.2.3,

but in some cases they may be included in the customer

representative’s preparations.

As described in the previous chapter, it is the user

coordinator’s responsibility to understand clearly each

RFC so as to facilitate the vetting process. If there was

any uncertainty about any of them, it should have

been discussed with the RFC’s initiator. Included with

a description of an RFC is the required (or preferred)

date of its implementation, but defining a date does

not necessarily clarify the importance or urgency of

the RFC, so a part of the user coordinator’s discussion

with the initiator should be to establish these issues.

The information and understanding gained by the user

coordinator is used not only in the vetting process but

also in determining reasonable completion dates for the

RFCs and establishing their relative priorities.

The user coordinator, on behalf of the customer

representative, also needs to understand the

implications of each RFC. In requesting a certain

change, a user is not likely to be aware that it might

obviate the need for some other requirement previously

specified (either in the original specification or as an

earlier RFC). But recognizing such implications is

important, for it saves costs — whereas other changes

may increase them. When it comes to the prioritization

list, it is important not only to rearrange priorities but

also to remove obsolete requirements from it.

So the user coordinator may carry out most of the

re-prioritization work, but the customer representative

should retain the responsibility for it. Based therefore

on his own knowledge, on the briefing of the user

coordinator, on the urgency of the functions to be

developed, and on the manpower, cost, and elapsed

time estimated for their implementation, the customer

representative produces a new priority list, inserting

new requirements, allocating new priorities to old

functions, and removing superseded requirements.

On occasions, when there are RFCs from a number

of customer domains, the customer representative may

need to seek advice from one or more other senior

managers, or even to convene a customer council

meeting in order to determine relative priorities.

The result of the customer representative’s efforts is

a new draft prioritization list (see Figure 12.1). Given

that the whole reprioritization process must be carried

Figure 12.1: A Prioritization Procedure

107 Prioritization of Work and Delivery Planning

Software
Projects

•	 The re-prioritization to be carried out by the

customer representative;

•	 The prioritization list to be produced by the

customer representative;

•	 The input to be made by the strategic

representative;

•	 The meeting to be held between the customer

and strategic representatives to agree the

customer representative’s prioritization list and

to discuss the absolute requirements for RFCs

on the strategic representative’s list.

The strategic representative also needs to attend the

prioritization and delivery planning meeting.

12.2.4	 The Development Manager’s
Responsibility

The development manager provides a service to

his customers. So under normal circumstances he

should attempt to meet their demands rather than

determine them. However, he has a responsibility to

make deliveries as effective as possible and to make

development as efficient as possible. In discharging the

latter responsibility, he may find it necessary to develop

software support modules or tools — for example, to

facilitate configuration management, or to monitor the

performance of the system and test conformity with

certain requirements such as the times of response.

Such additions to the development programme are

not always welcomed by the customer. Although logic

suggests their necessity, they are perceived to be outside

the contract and as not properly occupying development

effort or time. However their development cannot occupy

zero time; nor can they in most cases be developed

outside the project by others, for they usually need

to be integrated with the system under development.

Moreover, even if their development is not paid for by the

customer, it distracts some effort from one or more other

system functions and thus delay them. The development

manager therefore needs carefully to prepare the case

for their inclusion in the development schedule before

putting it to the other project participants, particularly

the customer representative. He should identify his

needs, their importance, the reasons why they need to be

developed within the project, the reasons why they have

not been developed earlier, and, importantly, their value

to the customer.

of those RFCs with definitive completion dates.

Thus, the two functions of creating a prioritization list

and scheduling the provision of the functions are linked, so

it is important that at the end of the procedure the meeting

of the four board members covers both prioritization and

delivery planning (see Section 12.4 below).

Strategically-based RFCs would normally have been

passed by the strategic representative to the customer

representative for inclusion in his preparations. The

customer representative and the strategic representative

both represent the customer organization, so it is

appropriate that they should agree their requirements

and resolve any differences which they may have over

priorities before coming to the prioritization and delivery

planning meeting. Once the customer representative has

proposed a new prioritization list, they should meet to

discover and resolve any conflicts between them. It is not

always possible to resolve all disagreements in advance of

planning the deliveries because, as will be seen in Section

12.3, there are a number of reasons why a delivery cannot

be composed simply of the functions of the highest priot

we require a good understanrity. Given this uncertainty,

there is sometimes a need for the strategic representative to

maintain a separate list of changes (or new requirements)

whose completion dates are critical and must not be

compromised. Thus, the customer representative’s list

is of relative priorities and the strategic representative’s

requirement may be for absolute delivery dates. Both

requirements need to be presented at the prioritization

and delivery planning meeting.

It could reasonably be argued that what goes on

between the customer and strategic representatives is

in the customer’s domain and should not be the concern

of the project manager. But experience shows that their

involvement in the reprioritization process may not

occur unless the project manager has some say in it and

unless there are clear definitions of what should happen,

who should be involved, and when it should occur. In

creating the project infrastructure (see Chapter 8), the

project manager should be careful not only to define

the procedures for the way in which prioritization (and

other processes) are to be carried out, but also to obtain

the agreement of all essential participants in them that

they understand the procedures and agree to adhere

to them. So the prioritization procedure needs to be

defined and should include at least:

Software
Projects

108Prioritization of Work and Delivery Planning

other participants (the members of the project board),

along with an invitation to the prioritization and

delivery planning meeting, which should have been

scheduled well in advance. Due to the difficulty of

bringing more than two managers together at short

notice, we had a policy of scheduling all regular

meetings a year in advance, with confirmation of the

next meeting and extension of the schedule occurring

at each meeting.

12.2.6	 The Meeting
As at other project meetings, it is normal for the

project manager to chair the meeting, the objectives

of which are to develop a new, agreed, prioritized list

of functions to be developed and to plan the contents

of subsequent deliveries. As shown in Figure 12.1, the

inputs to the process are the customer representative’s

newly prioritized list, any proposals for development

which the development and project managers might

have, and the strategic representative’s list of business-

originated RFCs. The two purposes are integrated, and

as it is seldom possible to separate them and treat them

in series, they should be carried out in parallel. The

outputs of the meeting are a new prioritization list and

the plans for future deliveries.

12.2.7	 Timing
The prioritization and delivery planning procedure

needs to be carried out with the same periodicity as

deliveries. With deliveries at three-monthly intervals,

we re-prioritized four times per year, and we carried

out the process soon after each delivery. By the time

delivery N was made, the development of delivery

N+1 was already well advanced, so with the exception

of the most urgent business requirements, no changes

could be made to it. Thus, after delivery N, we made a

final plan for delivery N+2 (almost six months into the

future), reviewed the plan for delivery N+3, and made

an initial plan for delivery N+4. We thus maintained a

rolling one-year plan.

12.3	 Prioritization
The first issue is to confirm that the strategic

representative concurs with the prioritization list

submitted by the customer representative. Agreement

Such proposals for change should be agreed between

the project manager and development manager prior to

the prioritization and delivery planning meeting and

included in the documentation sent to participants by

the project manager in advance of the meeting.

It is also possible for the developers (particularly the

designers) to detect the need for system features which

have not been specified. For example, many customers

omit security functions from their specifications and it

may be the designers who detect the need for routines to

restrict access to the system and monitor security. Such

proposals from the developers should be submitted at

any appropriate time by the development manager to the

customer representative but should not be proposed at

the prioritization and delivery planning meeting. If the

proposal is accepted by the customer representative, it

would need to be submitted back to the developers for an

assessment of the effort and cost involved, according to

the procedure described in the previous chapter. When

this has been done and the RFC approved, the customer

representative would determine the new function’s

priority and bring it to the prioritization and delivery

planning meeting as part of his prioritization list.

12.2.5	 The Project Manager’s Responsibility
The project manager cannot assume that everything

will go according to plan or procedure. One of his

functions is to put monitoring and quality control

procedures in place so as to ensure that nothing goes

unchecked. Thus, three weeks before the prioritization

and delivery planning meeting he should receive the new

prioritized list from the customer representative, ensure

that it has been approved by the strategic representative,

and receive any proposals for software to support the

development process from the development manager.

In addition, the project manager may himself wish to

specify software development in support of the project,

for example, of a software module to collect or analyse

project management data. In such a case, his support

team would document the requirement and include it

with the other documentation mentioned above.

When he (or his support team on his behalf) has

ensured that there are no omissions or superfluous

entries in the customer representative’s list, the project

manager dispatches all the above information to the

109 Prioritization of Work and Delivery Planning

Software
Projects

12.4	 Delivery Planning
Typically, the customer representative would like

the functions to be delivered in precise order of priority,

and as many as possible at each delivery. So would

everyone else. But because this is almost never possible

to arrange, the voice of the development manager

carries a great deal of weight in this part of the meeting.

It is therefore important that the development manager

is sufficiently experienced and authoritative to present

his view and to emphasise the error and disadvantages

of promising too much.

Again the project manager is the final arbiter, but

here decisions depend more on logistics, common

sense and discretion. More compromise is necessary,

for there are many reasons why the priority list is only

the starting point and the guide to the delivery plan.

In the main, these reasons centre around the use of

development effort, typical examples, illustrated by

three figures, being given in the sections below. Figure

12.2 shows the previous delivery plan, with A—M

being the requirements scheduled to be developed.

Figure 12.3 shows the customer representative’s new

proposed prioritization list, with suggestions for

deliveries defined by dotted lines. Figure 12.4 shows

how delivery N+2 changes from the proposal as the

result of practical constraints.

12.4.1	 Delivery Already in Development
As seen in Chapter 10, at least two, and usually

three, deliveries are under development at any given

should have been achieved between the two

representatives prior to the meeting, but the chairman

should still establish the situation. Often, if the

prioritization list does not contain business-originated

RFCs, the strategic representative does not have an

interest in the relative priorities of users’ RFCs, and

concurrence is irrelevant. On the other hand, some

users’ changes may have business-level implications,

in which case the strategic representative may wish to

exert influence or even to impose authority.

The next issue is to accord priorities to the items

introduced by the project manager and the development

manager. As the customers consider the development

to be for their benefit, it is not always easy to convince

them that this ‘extra’ work and the resulting diversion

of development staff would be to the benefit of the

project. The attitude sometimes seems to be that if

the development manager wants software routines to

improve development efficiency, he can make them in

his own time. The development manager may need to

point out that with all his time being dedicated to the

project, he has no time of his own. However, it is proper

that he should demonstrate the benefits of the work

before being allowed to expend effort other than on the

specified requirements.

A lesson here is that development tools for testing,

monitoring, or achieving efficiency should be a part

of the project infrastructure and should be considered

at the start of the project. They cannot always be

purchased off-the-shelf, nor their need predicted in

time to develop them at the start of the project, so the

possibility of the need to develop or tailor them should

be explained to the customer from the outset, and time

and effort allowed for this in the development plans.

When un-forecast requirements arose, our experience

was that with the project manager appointed to be the

arbiter of disputes, there was always a fair resolution,

even when the customer representative and the

development manager were both adamant that their

needs should be pre-eminent and immediate.

The result of the first part of the meeting is, therefore,

a new, up-to-date, prioritized list of requirements for

development, including any put forward by the project

and development managers. This is then used during

the second part of the meeting, and remains valid until

prioritization is repeated.
Figure 12.2: The Previous Delivery Plan

Software
Projects

110Prioritization of Work and Delivery Planning

and manpower can be saved, particularly in testing

at all levels. The development manager therefore

needs to be accurately briefed on which units would

have to be modified, and which would be otherwise

affected, during the implementation of RFCs or

original requirements. For example, Figure 12.3 shows

Requirement S as having a high enough priority to be

included in delivery N+2. However, the development

manager knows that while Requirement G is being

implemented it would be sensible to implement

Requirements T and M. They are of lower priority, but

the effort to deal with them would be halved if they

were combined with Requirement G. The meeting

must then decide whether to implement Requirements

G and S now and not save the effort and time (an

improbable decision), to implement Requirements G, T

and M now and defer S, or to implement Requirement

S now and defer G, T and M. As Requirement G is of

higher priority than S, the second choice is likely (see

Figure 12.4), given that the inclusion of Requirements

T and M does not delay the delivery. It is important for

the periodicity of deliveries to be maintained and for

the actual dates to be met once they have been set. We

time. Thus, it may be that a requirement of previously

high, but now diminished, priority is already near

to completion. For example, this is the case with

Requirement I (but not Requirement H). In the previous

delivery plan (see Figure 12.2) Requirements I and H

are both scheduled for delivery N+2. The customer

representative’s re-prioritization reduces their urgency

(see Figure 12.3), so it might be expected that they would

be forced out of this delivery. However, as Requirement

I is already integrated into the delivery, and its removal

would incur extra effort, it is retained in the final plan

for delivery N+2 — at the expense of Requirement X (see

Figure 12.4). But the development of Requirement H is

not yet far advanced, so it is relegated to a later delivery,

commensurate with the customer representative’s new

prioritization list.

12.4.2	 Changes To The Same Software Unit
If all foreseen changes to a given software unit

can be made at the same time, a great deal of time

Figure 12.3: The New Priority List

Figure 12.4: The Final Decision on Delivery N+2

111 Prioritization of Work and Delivery Planning

Software
Projects

The strategic representative may need to insist on

certain requirements being accorded high priorities.

For example, Requirement Z is introduced at short

notice into delivery N+2 for this reason (see Figure 12.4).

Experience shows that when changes are necessary

for the business to meet essential target dates, for

example for compliance with international standards

or agreements, or to benefit the organization, everyone

on the project is willing to cooperate entirely,

provided that the requirements and the reasons are

communicated. However, if there is reason to believe

that the strategically-determined priority is artificially

high, or the completion date unnecessarily stringent,

compliance is not assured. For example, if a new function

is to support a new product, and it is known that the

product will be late, it may be felt that the original

completion date for the function could be relaxed, to

avoid a stressful rush or to make way for a function that

would be more immediately useful. Similarly, it is not

unknown for senior managers to impose unreasonable

(and, from a business point of view, unnecessary)

deadlines on developers because the completion of a

certain function by a certain time would bring them (the

senior manager) a bonus. In my experience, developers

resent this not because of the reason (why shouldn’t the

manager look out for himself?) but for the deceit, which

often veils the reasons given for the deadline.

So the strategic representative is likely to get his

way if he is seen to be honest and reasonable but to

encounter opposition if not. If disagreement is expected,

the project manager should seek a resolution with the

customer’s senior management before the meeting.

Otherwise, on rare occasions, he might take an action

point at the meeting to resolve the matter subsequently.

12.4.6	 Form of the Delivery Plan
All requirements to be developed within a delivery

will already have been specified in detail, either in the

original specification or as an RFC. It would therefore

be ineffective for the delivery plan to include their full

specifications. It is therefore sufficient for the delivery

plan document to identify each by its title and number,

with reference to the document in which it is fully

specified. Quality assurance of the delivery plan should

include checks to ensure that each requirement is

uniquely and unambiguously identified, that its scope

aimed to schedule each delivery to within two weeks

either side of three calendar months from the previous

one.

The above paragraph shows the complexity

of planning deliveries. If thorough analyses of

requirements and RFCs have not been carried out, the

information necessary for delivery planning cannot be

available. The project manager needs to ensure that all

necessary preparation has been carried out, otherwise

the prioritization meeting becomes a detailed analysis

session rather than a decision-making process.

12.4.3	 Large Jobs
There are times when the high manpower necessary

for implementing a given requirement would preclude

parallel work if it were needed within a short time.

Except in the most urgent cases, this is to be avoided,

as a balanced effort across a number of tasks is usually

desirable, from both developers’ and users’ points

of view. Thus, while Requirement R (see Figure 12.3)

would seem a candidate for delivery N+2 because of its

priority, if its demand on resources is such that it would

be the only requirement provided in that delivery, it

would be deferred (see Figure 12.4).

12.4.4	 Dependencies
On occasions, the development, testing, or successful

operation of one software unit depends on the existence

and correct operation of another. The second unit may,

for example, be a communications module, a man-

machine interface facility, or a performance monitoring

routine. If the second unit does not exist, its development

has to be advanced, in spite of an apparently lower

priority, if its dependent unit is to be implemented.

The documentation of RFCs should include

references to any related requirements in the original

specification as well as information on the impact of

the proposed change on any other requirements or

functions. The maintenance of such cross-references

ensures that the extent, scope and impact of the work to

be done are clearly defined. The project manager should

verify that this information is available at the delivery

planning meeting so that there is no uncertainty about

the amount of work being accepted for a delivery.

12.4.5	 Strategic Requirements

Software
Projects

112Prioritization of Work and Delivery Planning

and when it is, it causes problems because the

procedure is not formal and the wrong persons

are involved.

•	 Experience leads to two recommendations: first,

that re-prioritization should be carried out at the

planning stage of each and every delivery, and

second, that there should be a formal procedure

for it.

•	 It is important not only to rearrange priorities

but also to remove obsolete requirements.

•	 Due to the difficulty of bringing more than

two managers together at short notice, we had

a policy of scheduling all regular meetings a

year in advance, with confirmation of the next

meeting and extension of the schedule occurring

at each meeting.

•	 The prioritization and delivery planning

procedure needs to be carried out with the same

periodicity as deliveries. With deliveries at

three-monthly intervals, we re-prioritized four

times per year, and ... maintained a rolling one-

year plan.

•	 Development tools for testing, monitoring,

or achieving efficiency should be a part of the

project infrastructure and should be considered

at the start of the project.

and boundary are clearly defined, and that its cross-

references are correct.

12.5	 Summary And Extracts
To gain the greatest benefits from evolutionary

delivery, the most highly prioritized functions should

be delivered earliest. So, with requirements changing

throughout the project, re-prioritization at the same

frequency as deliveries is a necessity. In addition,

however, there are several practical issues which

place constraints on the contents of deliveries and

force compromises on their planning. The issues of

re-prioritization and delivery planning are therefore

continuous and mutually-influencing processes.

This chapter has presented a procedure for regular

re-prioritization and delivery planning — one which

was arrived at iteratively in practice and which worked

well. It identifies those who should be involved and

defines their responsibilities. From it, project managers

could design detailed procedures to suit the particular

circumstances of their own projects.

The following extracts make some of the chapter’s

points, though they do not describe the procedure.

•	 Prioritization does not need to be a complex

matter ... However, too often it is not carried out,

113 Testing

Software
Projects

finding and fixing bugs later in the life cycle: during

validation, or acceptance testing, or when the system

is already in service. The ten-to-one rule applies: it

states that a fault introduced into the system in stage

N of the life cycle costs ten times more to eradicate at

stage N+1 than it would have done at stage N, 100 times

more at stage N+2, etc. Of course, the figure of ten is

not definitive; it might be eight in some cases, twelve

in others, or even five in some; but the principle stands:

it is more difficult and more costly to repair a fault the

longer you leave it (or the longer it remains undetected).

Testing is an integral part of software development.

It needs to be an integral part of programming. Then,

completing a program becomes an iterative process of

programming, testing, correcting, testing, and signing

off the program as having met predetermined test

criteria. To achieve this mode of working, and, indeed,

the attitude necessary for it, programming needs

to be defined, in education, as an integrated coding

and testing process, and taught as such. Software

engineering and programming courses should include

instruction in testing theory and techniques, and

13.1	 The Issues
Testing is a touchy subject. Most developers are not

trained in it and do not care to spend their time on it.

Many find it boring, do not appreciate its importance,

and prefer to think their job complete when a program

has been written, at which time testing is merely to

provide confirmation of good work.

Managers do not often attempt to shift the

developers’ attitude in favour of testing. Have you ever

come across a conversation like the following?

Manager: ‘All this testing takes a lot of time. What

do you want to do it for?’

Developer: ‘To find the bugs.’

Manager: ‘How do you know there are any bugs?’

Developer: ‘I don’t.’

Manager: ‘Then what do you want to do all this

testing for?’

The manager has the last word. He saves money by

not sending the developer for training in testing and

he saves time on the earlier stages of the project by

minimizing testing. But then he incurs huge cost and

time penalties on account of the greater difficulty in

13
Testing

Software
Projects

114Testing

cost of making changes to the software, the greater the

value of getting it right in the first place. Thus, for a

large system, of value to its users and provided by ED,

there is likely to be significant advantage in carrying

out thorough testing of each delivery and attempting to

ensure that it is ‘right’.

So we want to carry out thorough testing. But

testing is expensive. Given that we can never prove

perfection, we want to avoid testing beyond the point

of significantly diminished returns — that is, we want

testing to be cost-effective. So we need to understand

the cost of there being a bug in a delivered system —

the cost to the customer and the cost to the maintainers.

In other words, what are the risks?

But in most projects, ED and otherwise, the problem

is not that the risks are difficult to identify, but that no

one has endeavoured to identify and assess them. As a

consequence, there is usually no risk-based determinant

of what should be tested or how much testing should

be carried out. The result is that many organizations

over-test — that is, they attempt to test exhaustively.

In other words, they try to acquire 100% confidence of

there being no errors in the system, rather than a level

of confidence commensurate with the risk of loss of the

system. Naturally they fail, for it is impossible to test

any but a very simple software system fully in a finite

time.

Testing is intended to give confidence. It should not

be mistaken for a means of proving that there are no

remaining faults, for it cannot do this. If testing reveals

no faults, it is wiser to conclude that the tests were

inadequate than that the system is fault-free. Of course,

the tests may have been adequate to provide the desired

level of confidence, given that this is known.

On the other hand, the derived level of confidence

could be spurious. Suppose that the tests were poorly

designed? They may, for example, be trivial but

repetitive. Then, a large array of tests, perhaps executed

over a long period, could only provide confidence in the

sub-set of the software which had in fact been tested —

actually, over-tested. But, in ignorance, the confidence

might be extended to the whole system. This would

be costly, both in the testing itself and in the later

consequences of maintenance. So we ask, what is the

minimum level of testing required in order to secure

the desired level of confidence? And we come full

success in team and individual student projects should

require evidence of their use. Only then will there be

a change from the culture of perceiving testing as an

‘extra’ to perceiving it as an integral and essential part

not only of development but also of programming.

Because of having to change not one but several

versions of the system, late corrections in ED are even

more time-consuming and expensive than in waterfall

model development. It is therefore cost-effective to

achieve correctness at the earliest possible stage. This

implies good development practice and thorough

testing at the T level (see Figure 10.1 in Chapter 10).

The methods we adopted for testing are discussed

in Section 13.3 and 13.4, but first, an enquiry is made

into what we should seek to achieve from testing.

13.2	 Testing And Confidence
Testing can prove imperfection by finding a single

fault, but it cannot prove perfection. So what is it for? It

is intended to give confidence. It is a risk-management

activity. If this statement seems odd, consider this: if

there were no risk attached to getting something wrong,

there would be no point in testing it. One could simply

bring it into service, correct errors as they are revealed,

and lose nothing by doing so. But the greater the risk

attached to getting it wrong, the more important it is

to get it right and the more carefully one would test it.

An example of recognising testing as a risk-

management activity is the practice of ‘beta releases’.

In this, the customer perceives an advantage in gaining

early experience of a product and accepts that it may not

yet have been thoroughly tested. The supplier believes

that he will lose nothing if bugs in the software cause

some problems to the customer and that he will gain a

great deal if the customer puts the software to the test

and reports any bugs to him. A difficulty may arise if the

customer experiences more than a reasonable amount

of trouble, so the supplier must carry out sufficient

testing in advance of the beta delivery to avoid losing

customers. How much testing is sufficient? This is a

matter for the supplier to decide in each case. In effect,

what he is doing in making the decision is carrying out

risk management.

As the value of having and using a product

increases, so does the cost of not having and using it,

perhaps because of a fault. Moreover, the greater the

115 Testing

Software
Projects

the different levels of the CM system (so that

T-level programmers were ‘contracted’ suppliers

to the I-level team) and checks on the delivery

times and the quality of products through peer

pressure;

4.	 The facility for independent random checking

(or auditing) of software at the T level;

5.	 The recording of re-work and re-testing as

quality-related costs.

The first of the above points is self-explanatory. The

second is only what most of us would agree is altogether

proper: that each person should be responsible for

(and should take a pride in) his work. Yet, it is not

uncommon to find programmers not being expected

to accept responsibility for either the quality of their

work or the timing of its delivery. My experience is that

while a lax environment (which reduces quality) seems

to be easily accepted by programmers (and other staff),

higher expectations are appreciated even more — and

what is more, they are responded to.

The third point was simply that we created

customer-supplier relationships between each other.

The awareness that others are dependent on you and

the peer pressure which this generates tend to provide

an incentive both to do the work and to take a pride in

it. You know that your product will be used and that

you will receive feedback about it.

The fourth point refers to the random checking of

code. Our system was this. Programmers wrote their

code in the T level working area, which was in fact

outside the control of the CM system (see Figure 10.2 in

Chapter 10). They were responsible for implementing

the designs of the module designers and verifying a

faithful translation from design to code. When they

had satisfied themselves that this had been achieved,

they transferred their code into the T level (proper)

of the CM system and were responsible for carrying

out pre-designed verification tests on it. As a form of

independent quality assurance, spot checks could be

carried out, usually by someone from the integration

and test team, using the test cases for the module in

question created by its designers.

The final point in the bullet list above refers to an

understanding by the developers of the principles of

quality. Too often management talks about quality

but fails to take the trouble to train staff and follow

circle, for this question cannot be answered unless we

understand two things. First, we need to understand

the consequences of errors being in the system —

and this has traditionally not been done in software

development. Second, we need to understand how to

test (otherwise we run into the problems mentioned

above, for example, of over-testing in ignorance) —

and typically software testers have neither expert

knowledge nor broad experience of testing.

13.3	 Testing In Evolutionary Delivery
Testing takes a great deal of the developers’ time in

ED. It is carried out at every level (it is the customer’s

responsibility at the U level) of the process (see Figure

10.1 in Chapter 10), and when something is found to

be erroneous and has to be corrected, it is returned to

the lowest (T) level, corrected there, and re-tested. It

is therefore crucial for testing to be carried out both

efficiently and effectively. Every test must count.

If the temptation to economize on testing is unwise

in other forms of development, it is positively dangerous

in ED. Yet the attitude of, ‘why spend much on it now

if we are likely to change it anyway,’ is not unlikely.

But beware: if you are contemplating minimizing

testing, be sure you understand the risks you think you

are reducing and, equally importantly, those you are

taking.

13.3.1	 The T Level
It is said that modules of code should be tested by

an independent verification and validation team —

independent, that is, of the programmers. The argument

is that if a programmer errs in interpreting the design

and thus builds a bug into the code, he will test for

the bug as though it were a correct feature. In spite

of this exhortation, very few organizations practise

independent testing.

In our projects, we did not provide independence

in the testing of the lowest level of software modules

(though we did at the integration levels). Yet, we

achieved high-quality software. We attributed this

principally to five factors:

1.	 Training the programmers in testing;

2.	 Giving the programmers clearly defined

responsibility for the quality of their code;

3.	 A system of ‘mini contracts’ between staff at

Software
Projects

116Testing

must be based on the integration plan. Planning at the

I level is the basis of the development of each delivery.

It would be convenient to draw up the integration

plan for a delivery from a knowledge only of the

functionality of the modules. But this would be

impractical. A module which the integration team

would like to introduce into the process at an early

stage may be the one which will take longest to develop.

So the plan needs to be drawn up with reference not

only to the ideal order of integration but also to the

estimated development effort required for each module

in the delivery. In planning, there should be discussion

between the two teams involved, and there may need to

be compromises on both sides, with the integration and

test team accepting a non-optimum order of delivery

and the programming team juggling its staff so as to

put extra effort onto some modules to accelerate their

development. In our case, the decision-making process

was eased by the fact that the design and coding team

leader was responsible for both the T and I levels.

The integration plan should not be drawn up in

isolation, but in the knowledge of the requirements of

the higher levels of the CM system: the anticipated time

for validation of the system at the S level (based on the

experience of previous deliveries), the arrangements

with the customer for pre-delivery testing at the U

level, and the known time to build the system and

carry out confidence tests at the L level. Only with such

integrated planning, and then with the programmers’

commitment to the integration plan, can the developers

be confident of making their deliveries on time — and,

as has already been observed, it is crucial to confidence

and morale for them to do so.

As mentioned in Chapter 10, a debugger was used

in testing at both the T and I levels. This incurred an

overhead in compilation time, but it provided the

facility for stepping through the software instruction

by instruction in the event of an elusive bug. Given that

these two levels (and particularly the T level) were the

only ones at which detailed ‘destructive’ testing (i.e.,

attempting to break the system) could be carried out, it

was worth doing it well.

13.3.3	 The S Level
At this level, validation is carried out to prove

functionality rather than primarily to find bugs.

the training with support. More importantly, they

even more often fail to provide leadership in quality

by demonstrating a concern for it in their behaviour.

Training, support and leadership enable the staff not only

to recognize the words but also, and more importantly,

to understand the principles and how they relate to them

in this situation. Our staff understood the principles of

quality. A great deal of emphasis was placed on ‘getting

it right’ at the T level. The programmers understood

why this had to be so, and they had no doubt about the

seriousness of their responsibility. Testing is expensive,

and re-testing as a result of getting it wrong in the first

place was recognized by the programmers as a quality-

related cost.

When it was time to pass a module of completed code

to the I level, the programmer concerned notified the

appropriate person that it was ready for delivery. It was

only passed up when the recipient agreed to accept it,

and at that time the programmer signed it off as a quality

product. Signing off a product has a marvellous effect of

focusing the mind on the guarantee which is implied in

the signature and the responsibilities which lie behind

it. Their signatures implied that they had good reason

to believe their modules to be of the required quality,

that they accepted responsibility for this belief, and that

they recognised that any rework would be recorded as

quality-related costs against them.

13.3.2	 The I Level
When software arrives at the I level, it does so as

disparate modules coded at the T level by different

programmers. At the I level, these are integrated, and

the interfaces between them and the larger (integrated)

units tested. If all modules were integrated at the

same time, the likelihood of the product not working

satisfactorily and the difficulty of diagnosing the

problem would both be increased. The system therefore

needs to be integrated in stages, with the modules

being brought together in an order defined (ideally) by

a logical incremental increase in the functionality of the

system.

It takes time to integrate the modules of a system

and to test thoroughly the functionality of the larger

and larger units created in the process. If the delivery is

to be on schedule, the modules must be delivered from

the T level on time and their development schedules

117 Testing

Software
Projects

on the system. What we found was that after the first

delivery, on which they carried out acceptance testing,

the users considered their involvement in testing to have

ended and they did not like the idea of having to make

further time for it. The attitude derives from waterfall

model projects, in which the system is delivered in one

big bang and acceptance is a one-off process.

The advantage of not having the customer carry

out tests, whether they are called ‘acceptance tests’ or

‘pre-delivery tests’, is that it saves the developers’ time.

The disadvantage is that the developers do not obtain

the benefit of the customer’s or users’ viewpoints in

designing the tests. This is a significant drawback, for

the developers often cannot envisage how the users will

employ the system or what they will expect of it, so they

fail to test it in many modes of operation, some of them

remarkably obvious (once they have been pointed out).

Once we discovered the value of the users’

involvement in designing tests, we strove to ensure

that they were always a part of the team that did this.

Good relationships with the customer representative

and the user coordinator enabled this participation,

often in spite of opposition from users’ local managers

who argued that their staff were too busy with essential

work to be diverted to ‘doing the developers’ work for

them’.

The U level was therefore used less than the other

levels, but we always maintained it to provide what we

considered a necessary customer facility. Of course,

the customer has the choice of whether to trust the

developers and not test the system, or to apply full

and rigorous tests to every delivery, or to take some

intermediate course. But beware of seeing the customer

or the users as a threat, or of hoping for them to stay out

of the way. Their testing is of value to the development

team and they should be encouraged to participate.

13.3.5	 The L Level
The purpose of the L level was described in

Chapter 10. The tests carried out there took the form

of ‘confidence checks’ that the system to be delivered

to site and brought into service was that which had

been configured and validated at the S level. Other

tests carried out at the L level were for the purpose of

maintenance, which is described in the next chapter.

Naturally, however, no bug found should be ignored.

The point worth remarking is the effect that the

time taken for system validation has on ED. At the

first delivery, it is likely that only a small percentage of

the total software is delivered, so validation may take

a relatively short time. But as the system grows, the

time taken increases rapidly. There is the time taken,

not only to carry out the testing, but also to design the

tests. Nor can tests designed for previous deliveries be

relied on to be reusable. As pointed out in Chapter 11,

the work on deliveries after the first is of four types,

of which changes to previously delivered sub-systems

or modules often predominates. So the previously

designed tests must also be changed.

Our systems grew rapidly, and they soon

required six weeks for validation. At this stage, many

organizations may consider whether it is acceptable to

reduce validation by leaving unchanged parts of the

system untested, on the assumption that the changes

will not have affected them. In very critical systems

this is a dangerous assumption. But again we return

to an assessment of the risks. If a residual bug could

cause serious loss of life, or the collapse of a business,

full validation may be unavoidable. If on the other

hand the risk is not so high, it may be feasible to trade

off the chance of failure against a saving in validation

time. A rule cannot be laid down for the solving of the

problem; the important thing is to be aware of the need

for decision.

One thing is certain, however, and that is that talk

of a delivery per week, or even per month, needs to be

taken with a pinch of salt. If validation takes six weeks,

it is not possible to have a delivery period of less than

that time. Moreover, if the period is made to be exactly

equal to the validation time, the implied commitment

is that a number of developers must work permanently

on validation, and this will almost certainly not be the

most effective way to employ them. A balance must be

struck between satisfying the customer and users with

frequent deliveries and using the development staff

effectively.

13.3.4	 The U Level
This level provided the customer (and the users)

with the opportunity of carrying out pre-delivery tests

Software
Projects

118Testing

documentation.

This affected the programmers at the T level, and the

integration and test team members were encouraged to

check for these features at the I level.

Second, keep the programming simple and

structured. ‘Clever’ programming often leads to

complexity, an increase in the likelihood of bugs, and

a decrease in test coverage. Again this principle was

appropriate to the programmers, and it was looked for

during code inspections.

Third, designers (not programmers) with the aid

of trained testers should design the test plans and test

cases for the software, in accordance with the principles

of the V development model (see Figure 2. 3 in Chapter

2).

Fourth, the test plans and test cases should be

subjected to thorough quality assurance. For this we

used Fagan’s Inspection.

Fifth, all developers should be trained in testing

principles and practice. We did not find programming

courses that integrated testing with programming, so

we ourselves conducted short courses in testing in the

context of programming.

Sixth, the development manager should create

and nurture the culture of testing, not merely as an

integral part of development, but as a natural part of

the programming process.

Seventh, use a static analysis tool to check that code

conforms to the defined rules of structure and the

standards laid down. This assumes that in the project

there are defined rules; if there are not, there is every

reason to doubt the quality of the code being produced.

Eighth, use one or more complexity measures to

get a feel for the complexity of each program or unit

of code. If a program’s complexity is above average, or

above some defined figure, it may be deemed necessary

to carry out extra tests on it, or to take extra precautions

to ensure that thorough test coverage is achieved.

However, these are not the only options. It is often

preferable to rewrite the program in a simpler way,

perhaps redesigning it and breaking it down into two

or more smaller modules. Although many people baulk

at the thought of this, arguing that it is a waste of time,

it is usually not as time-consuming as carrying out

extra tests now and still having to do more than average

debugging later. The programmer already understands

13.4	 Achieving Confidence Through
Testing

The way in which we used the configuration

management system for carrying out the testing process

was described in Section 13.3. The remaining question

is how did we achieve confidence in our software while

making testing cost-effective.

Inadequate testing leaves errors which will result

in the costs of later loss of service, aggravation to the

customer and users, and correction. On the other

hand, too much testing costs a great deal, while still

not guaranteeing freedom from errors. Can the right

balance be struck? Can we minimize the risk of future

costs while not spending excessively now? A fact which

warns us never to be cocksure is that the dependability

(reliability, safety, etc.) of a system is less a function of

the number of faults found or the number remaining

in the system than on the consequences of the residual

faults. A single fault can lead to a critical failure, or to

complex and expensive correction of the system. Our

confidence in testing should always be tempered by

this fact. Thus, in critical systems, reliance is not placed

entirely on fault avoidance (good development practice)

and fault removal (testing and correction), but also on

the inclusion of fault tolerance (redundancy in design

and recovery procedures) which can add considerably

to the cost of the system.

Yet, there are a number of points which, if observed,

can justify increased confidence in the testing of the

system. The following list of eleven testing principles

does not purport to be exhaustive, but it consists of

those points which we found to be most important,

both in achieving effective testing and in giving us

confidence in the quality of the tested software.

First, design software with testing in mind. For

example:

•	 Keep modules simple and short;

•	 Minimize the number of inputs to the module

and allow only a single output;

•	 Design only one function into a module (strong

cohesion);

•	 Make each module as independent of all others

as possible (weak coupling);

•	 Build checks for the validation of input data into

the code;

•	 Produce explicit, structured, complete design

119 Testing

Software
Projects

which programmers must have for testing, rather than

the activities which the testers must carry out. This

reinforces the affirmation that programmers should

not be encouraged to think of coding as an independent

discipline but should be taught to perceive it as having

testing integrated with it. It was our programmers’

awareness of testing, combined with our integration

and test team’s awareness of the principles of ‘test-

oriented programming’, which gave us the necessary

level of confidence in the quality of our products as we

delivered them. Too much emphasis cannot be placed

on this. In ED each delivery is a working system, not

a prototype, and, as we shall see in the next chapter,

maintenance can be complex and expensive, so assuring

the quality of deliveries is of high importance. Effective

testing is crucial to ED.

13.5	 Summary And Extracts
This chapter has explained the processes used for

testing at the various stages of an ED project. In doing

so, it identified the responsibilities of and between the

relevant project participants. It also addressed the point

that it is confidence and not perfection which can be

derived from testing, and it described the means by

which confidence in the quality of software can be

arrived at.

The following extracts are examples of the points

made in the chapter.

•	 It is more difficult and more costly to repair

a fault the longer you leave it (or the longer it

remains undetected).

•	 Completing a program becomes an iterative

process of programming, testing, correcting,

testing, and signing off.

•	 Programming needs to be defined, in education,

as an integrated coding and testing process, and

taught as such.

•	 Testing ... is intended to give confidence. It is a

risk-management activity. If there were no risk

attached to getting something wrong, there

would be no point in testing it.

•	 There is usually no risk-based determinant

of what should be tested or how much testing

should be carried out. The result is that many

organizations over-test.

•	 If testing reveals no faults, it is wiser to conclude

the problem to be solved and the algorithm for solving

it, so the second attempt gains from the experience of

the first and can be surprisingly quick and effective.

Ninth, choose test cases carefully, so as to achieve full

coverage while avoiding duplication. Let us consider

a trivial example (similar to one which I observed in

practice). A module consists of a function whose inputs

are intended to be integers between 1 and 75. Now,

it is known that many problems occur at boundary

values, so it is suggested that test values of 0, 1, 2, 74, 75

and 76 would be useful. Similarly, extreme out-range

values present problems, so appropriate test values are

necessary — say, 917 and -254. Finally, a mid-range value

is essential for validating the function — say, 39. Thus

in this simple example (ignoring non-integer values), a

minimum of nine tests are necessary. However, to prove

the module, the tester (the programmer) used values of

1, 5, and all values at intervals of 5 up to 75 — a total

of 16 tests. He neglected thorough testing at boundary

values, ignored extreme out-range values altogether,

and over-tested with mid-range values. Thus, of the

necessary nine tests he carried out three, achieving 3/9

(one third) of the minimum necessary coverage, at 16/9

(1.77) times the necessary cost. Beware of deriving false

confidence from apparently extensive testing, when in

fact extremely limited coverage has been achieved.

Tenth, test what the module should not do as well

as what it should. The large number of tests carried

out in the example of the previous paragraph gave the

tester high confidence that his software was sound. Yet,

he had merely tested the program’s function over and

over again. This is in fact the part of a program which is

most often correct. But he had not tested those parts of

the program which were most likely to contain errors.

In practice, he should also have used non-integer test

data to check the validation of input data.

Eleventh, test thoroughly at the earliest stage (the T

level in our ED structure). This is in fact the only stage

at which exhaustive testing can be carried out, for at

later stages the assumption is made that individual

software units are of good quality, and tests are focused

on functionality and interfaces. Do not forget the ten-

to-one rule: if the later assumption of quality is false, a

great deal of re-work will need to be carried out, first at

the basic level and then at higher levels.

Many of these principles concern the consideration

Software
Projects

120Testing

nurture the culture of testing, not merely as an

integral part of development, but as a natural

part of the programming process.

•	 Beware of deriving false confidence from

apparently extensive testing, when in fact

extremely limited coverage has been achieved.

•	 Test what the module should not do as well as

what it should.

•	

•	 Test thoroughly at the earliest stage (the T level).

This is in fact the only stage at which exhaustive

testing can be carried out, for at later stages the

assumption is made that individual software

units are of good quality, and tests are focused

on functionality and interfaces.

•	 It was our programmers’ awareness of testing,

combined with our integration and test team’s

awareness of the principles of ‘test-oriented

programming’, which gave us the necessary

level of confidence in the quality of our products

as we delivered them.

that the tests were inadequate than that the

system is fault-free.

•	 If you are contemplating minimizing testing, be

sure you understand the risks you think you are

reducing and, equally importantly, those you

are taking.

•	 While a lax environment (which reduces quality)

seems to be easily accepted by programmers

(and other staff), higher expectations are

appreciated even more — and what is more,

they are responded to.

•	 If the delivery is to be on schedule, the modules

must be delivered from the T level on time and

their development schedules must be based on

the integration plan. Planning at the I level is the

basis of the development of each delivery.

•	 Beware of seeing the customer or the users as a

threat, or of hoping for them to stay out of the

way. Their testing is of value to the development

team and they should be encouraged to

participate.

•	 The development manager should create and

121 Software Maintenance —

Software
Projects

would only refer to the correction of defects. However,

with hardware the maintenance work (such as the

replacement of failed items) is discernibly different

in kind from redesign and from the addition of new

functions, while for software there is no replacement

of worn out parts, and programming for redesign is not

different in kind from programming to fix a defect. So,

particularly with reference to the waterfall development

model, it easily became accepted for the stage of a

system’s life cycle following acceptance into service to

be called ‘maintenance’, with no distinction being made

between the reasons for the work being done.

Even though the large maintenance teams retained

by most companies typically spend most of their

time implementing new requirements rather than

making corrections, the companies have not concerned

themselves with identifying improvements to their

systems. A disadvantage of this is that the systems are

valued at their original development cost, and added

value is not accrued in the company’s assets register.

A further result of lumping all work together as

maintenance is that, in order to give the impression of

14.1	 The Issues
Software maintenance is traditionally understood to

consist of any work carried out on the software after a

system has been brought into service. For example, James

Martin referred to it as ‘... changes that have to be made

to computer programs after they have been delivered

to the customer or user’ [Martin 1983]; and Glass and

Noiseux said that ‘Maintenance is the process of being

responsive to user needs — fixing errors, making user-

specification modifications, honing the programs to be

more useful’ [Glass 1981]. These defining statements

are affirmed by the acceptance of three ‘dimensions’ of

software maintenance, namely ‘perfective’, ‘adaptive’

and ‘corrective’ maintenance [Swanson 76], where

perfective and adaptive maintenance involve making

changes to the software to keep up with changing

needs, and only corrective maintenance is the fixing of

incorrect software.

Such broad definitions of maintenance are unique

to software. Changes to the functionality of hardware

would traditionally be recognized as redesign and

redevelopment, as distinct from maintenance, which

14
Software Maintenance —

Definition and Procedures

Software
Projects

122Software Maintenance —

changes from stimulation to resentment, and morale

deteriorates. One is poisoned by an excess of one’s own

adrenaline.

Given the limitations of the traditional definition of

software maintenance, it is important to redefine it, at

least in the context of ED, and this is done below.

Having a more appropriate definition of software

maintenance is the first step towards controlling the

after-delivery service to the customer. It relieves the

pressure on the developers, for it provides a basis for

distinguishing between maintenance work, which is

afforded immediate attention, and requests for change

(RFCs), which should be directed through the change-

control procedures described in Chapter 11.

The next step is to have procedures for carrying

out the maintenance. These should describe methods

of working which ensure efficiency in the effort of

maintenance staff, effectiveness in the work they do,

and satisfaction to the customer. Beware of thinking

that achieving effectiveness is the same as affording

satisfaction. It is not so. Effectiveness is one consideration,

and a necessary one, but customer satisfaction is not the

result of an objective recognition of correctness; it stems

from a subjective perception of all contributing factors,

including speed of service, attitude, politeness, and

feedback. As well as defining maintenance in a manner

appropriate to ED, this chapter describes maintenance

procedures, and management, which evolved with

experience and which were found to be effective.

14.2	 Redefining Software
Maintenance

It was shown in Chapter 11 that once a delivery has

been made there are four categories of work to be done

on the software.

1.	 Continuing development as per the original

specification of requirements;

2.	 Developing newly specified functions;

3.	 Making modifications to software already

provided which, although conforming to its

specification, was shown by use not to meet

the users’ actual requirements in one way or

another;

4.	 Correcting software which was shown not to

conform to its specification.

The first three categories of work are development,

a project being completed on time and within budget,

project managers may compromise on meeting the

specification and deliberately leave development

work undone, to be carried out under the disguise of

maintenance after the system has been accepted into

service. The tragedy is that this is often done with the

connivance (overt or covert) of senior managers who

are less concerned with quality than with publicizing

the ‘successful’ completion of a project. But who

suffers from this? The developers, for while the project

manager is praised for having completed the project on

time, they are left with having to spend considerable

further time on ‘maintenance’ of a system which is in

fact of good quality.

So, defining software maintenance as embracing

all types of work has had its disadvantages, but the

easy path for most companies has been to accept it.

Senior managers have stayed clear of the foreign world

of computers, ‘maintenance’ teams have grown by

doing whatever has been asked of them, and finance

departments have avoided revaluing computer systems

when new functionality has been added to them. But

the traditional definition of software maintenance has

only been justifiable if the system has been delivered in

one ‘big bang’ — and even then it should have entered

its operation and maintenance stage in its completed

state rather than with some of its original specification

still to be met.

But when ED is employed, maintenance and

development cannot be separated by a point of time.

As soon as the first delivery is made, maintenance

activities are likely to become necessary, while at the

same time development must continue. To abide by

the old definition would be to decide that development

ends at the first delivery and that all subsequent work

is maintenance. As less than 10% of the requirements

specification may then have been met, this is clearly

absurd. Moreover, given that maintenance should

always be accorded immediate attention, it is important

for it to be distinguishable from continuing development.

If all work is maintenance, the development team must

forever be ‘fire fighting’. We all need the stimulation of

‘pressure’ from time to time, and most of us react to

it by increasing and improving our effort and output,

but it should not be the norm. If it persists for too long,

its effect becomes counter-productive: the response

123 Software Maintenance —

Software
Projects

part faultlessly?

We realized that we had to share the blame.

Whereas we demanded professionalism of ourselves

in all stages of development, we could not expect the

same of our users. It was not their job or their domain

of expertise. We would have liked it to be different,

and I am convinced that customers could and should

participate a great deal more in their projects and, by

doing so, improve the chance of their success. Indeed

until they do, they will not receive optimal systems.

Nevertheless, it was not enough to stand back and

cast blame. A system which did not meet the users’

requirements, even if it conformed to its specification,

did none of us any good; and it certainly didn’t serve

the users’ business.

We therefore set out to do two things. The first was

to improve requirements capture and requirements

expression (in the specification). The second was to

create a relationship with our customers and users such

that disputes were in the first place unlikely to arise and

in the second place easy to resolve. A number of actions

were taken on the first count, one being to increase

emphasis on prototyping prior to specification. This

has the twin effects of attracting the users’ participation

and obtaining from them statements of requirements,

which could be verified.

Among the actions taken on the second count (that of

improving relationships) were the introduction of more

formal meetings, more informal visits, more openness

about our problems, and the provision to the users of

a help line for the rapid resolution of their problems.

The effects were increased contact, communication,

honesty and understanding. Customers and users have

rights to certain expectations, and our being defensive

or arguing that their expectations are excessive will not

change them. However, we found that if we explained

our problems, their inclination was to be sympathetic.

Similarly, it is to our advantage to express sympathy for

their problems, even when we are unable to solve them

as they would like. Being open evokes human warmth

and reasonableness.

The results of our initiatives included greater

professionalism all round, a better understanding of

each others’ problems, fewer issues to resolve, a sounder

basis for the resolution of issues which did arise, and

a stronger willingness to find the best solutions rather

and only the fourth is maintenance. An appropriate

definition of software maintenance would therefore be,

‘Modifications made to software found after delivery

not to conform to its specification, in order to make it

conform to its specification.’

This is a return to the older concept of maintenance

used in hardware systems.

From time to time, it may be found that although a

unit of software does not conform to its specification

the users discover that the original specification was

wrong or no longer applicable. The modifications to

be made will therefore need to be re-specified. In such

cases, the non-conformity should be recorded, but the

effort required for the modifications should be costed

against development and not maintenance.

14.3	 A Problem To Be Resolved
As developers, the above definition of software

maintenance suited us well, our greatest problem being

in agreeing with our customers and users on which

work fell within it — though I should add that this was

mainly in the early days before we invested special

effort in maintaining good relations with them. When

people are warn ‘implicit’ system of controly of each

other, their eagerness to find differences in their views

seems to be stronger than their will to agree; when

their relationships are harmonious, it is the other way

around.

We experienced little problem in agreeing on which

work fell into categories 1, 2 and 4 (see Section 14.2.1

above). The trouble was with 3. If users found that a

function did not perform as required at the time of

use, the natural tendency was to record the fact as a

defect of the system. They did not at first find it easy to

recognize that the problem was (or even, might be) in

their specification.

But whose fault was it? Had we, the developers,

not written a large part of the specification, albeit with

information derived from the customer and users?

One of the most difficult and demanding stages

of the project life cycle is requirements capture, the

success of which relies on considerable skill, experience

and patience on the part of the analysts, committed and

continuous participation on the part of the customers

and users, and extensive verification and validation by

both. Could we honestly declare that we had played our

Software
Projects

124Software Maintenance —

collaboration with the staff which are the stimulating

factors. Good management is the determinant. The

insensitive use of measurements can demotivate

development staff.

14.4.3	 Budgeting and Accounting
A third advantage is to the business, in budgeting

and accounting for the project. Now the finance

department can obtain the actual undistorted cost of

the materials and labour required to bring the system

into service with all its functionality, and increased

functionality is recognized as added value to the system

and can easily be quantified and included as such in

the company’s assets register. Moreover, by recording

the costs of carrying out the four categories of work

(see Section 14.2), the costs of both poor development

and poor specification can be quantified. Reference

has already been made to the efforts which we made

to improve both. Other managers might choose to base

improvement projects on the derived quality-related

costs.

14.4.4	 Planning Deliveries
A fourth advantage is in prioritizing work for

subsequent deliveries. Maintenance was accepted

by us as having to be done independently of other

development work. We had to find time for it, urgently if

necessary, so it always received a high priority. All other

work was subject to prioritization. This had the effect

of drawing attention to the category 3 modifications,

many of which were considered urgent by the users,

but it alleviated the pressure which would have been

placed on the developers if all ‘urgent’ modifications

were classified as maintenance and had to be made

immediately. By putting clearly defined procedures in

place, and managing them, all parties are enabled to

have a clearer and more realistic view of what it takes

to implement a development project.

14.5	 Necessary Features Of A
Maintenance Procedure

Software maintenance must take place within the

development environment’s control system — the CM

system described in Chapter 10 — where a copy of the

operational system is stored in the L level exclusively

for the use of maintenance staff. The design of a

than to apportion blame. Having been involved in

numerous software projects, and having observed

and read about countless others, I believe this was a

considerable achievement.

As to the issue of categorizing maintenance

work, greater involvement in the project and

greater discernment of the necessary attributes of a

specification led our customers and users to recognize

the inadequacies of their specification as well as of

our work. At the same time, the formal procedures

introduced for handling requests for change (see

Chapter 11) ensured that requirements expression

improved considerably and was subject to extensive

quality control.

14.4	 Advantages
By defining software maintenance as only those

activities resulting from non-conformity to specification,

a number of advantages accrue, both to the customer’s

organization and to the developers.

14.4.1	 Need for a Definition
The first advantage is simply having a clear

definition. With the old ‘understood’ definition being

altogether inappropriate to ED (and misleading and

inexact in other circumstances), a new and more

appropriate definition was not merely desirable but

essential.

14.4.2	 Quality Measurement
A second advantage is that there is now the basis

of a measure of the quality of development work.

Measuring and publishing maintenance costs (the cost

of poor quality) has the effect of eliciting pride when

the figures are low, both in absolute terms and as a

proportion of the original development costs. It also has

the effect of stimulating the will to reduce them in the

future, and it provides the basis of measurable targets

for quality improvement initiatives. If maintenance is

not distinguished from development, there is no such

incentive.

It should be pointed out, however, that the ‘basis’

for quality measurement does no good of itself. It is

taking measurements, publishing the results, deriving

comparisons with past figures and setting new targets

for the future, and defining improvement initiatives in

125 Software Maintenance —

Software
Projects

procedures may have other criteria related to particular

circumstances. However, note that of eight stated goals,

three (the first, fourth and seventh) are concerned

with the customer or the users. Maintenance has a

direct bearing on them. They have already received

the product — reasonably expecting it to conform to

its specification — and have (or believe that they have)

found it to be defective. The developers are at fault

for getting it wrong, and they should recognize this.

Maintenance consists not only of product care, but of

customer care as well.

14.6	 The Wherewithal For Carrying
Out Maintenance

As a minimum requirement, there need to be clear

definitions of:

•	 Responsibility for carrying out maintenance;

•	 Call-out procedures, for example, how users

should contact maintenance staff, whether staff

can be called outside of normal working hours

and, if so, how it is decided who is to be on duty

at any time;

•	 Procedures for the way in which maintenance

staff deal with users at the time that problems

are being reported and at all subsequent stages

of the maintenance process;

•	 Allocation of staff to maintenance, whether their

time is shared between maintenance and some

other function and, if so, what priorities apply;

•	 What facilities the maintenance staff have,

for example, for interrogating the live system,

shutting down the live system, and testing fixes

before installing them on the live system.

Referring to Figure 8.3, responsibility for

maintenance is assumed to be invested in the support

team leader. He would of course normally delegate

tasks to his staff, and he may need to arrange with other

team leaders to carry out certain work, but he cannot

shed the responsibility for the execution and integrity

of maintenance work.

Experience suggests that most reports of problems

arrive by telephone. In our case, a list of the support

team’s telephone numbers (at work) was held by the

operations staff, so rapid contact could be initiated

even by novice operators. However, familiarity and

friendship, resulting from regular site visits, led most

maintenance procedure must therefore be integrated

into the software control mechanisms, and the staff

organization and management should match the

procedure.

In ED there are at any time a number of deliveries in

preparation. Without care, maintenance changes made

at the L level could easily be cancelled, perhaps very

quickly, by the next delivery or the one after that. Any

procedure must ensure that this does not occur.

Maintenance, however, is not only procedural but

managerial as well:

by its nature, it must be based on decisions taken

in the light of current evidence. For certain routine

functions it is an advantage to have rigid procedures

which provide both guidance and discipline. In

maintenance, however, where corrective action

must be balanced by the need to sustain operational

service, flexibility is essential. Procedures should be

a framework for management responsibility, decision

and action.

A minimum set of maintenance goals, to be

considered when developing maintenance procedures

is:

•	 The response to users should be rapid and

efficient;

•	 A decision-making process should exist for

determining exactly what action is necessary;

•	 Urgent action should be identified and taken

immediately;

•	 Non-urgent corrections may be deferred,

perhaps to a later delivery, but always with the

agreement of the customer representative;

•	 All maintenance changes are formally

documented, both in maintenance records and

in the system’s design documentation;

•	 No changes should be inadvertently reversed or

overwritten by a subsequent delivery;

•	 Notification of action taken is formally provided

to the original reporter of the problem;

•	 Principles should be defined for the management

of maintenance procedures, and for the

interaction of managers in the development

organization in conducting and monitoring

maintenance work.

These are not necessarily the only goals of a

maintenance procedure, and a reader wanting to set up

Software
Projects

126Software Maintenance —

fix is introduced, the less complex it is to control it. If

the impact of the fault is great, the fix may need to be

implemented as soon as possible, but introducing it at

the L level imposes the greatest problem.

Suppose that the next delivery is already at the U

level and scheduled for delivery in three weeks time;

could delivery of the fix wait for that? Or, if the fault

is intermittent, its impact is low, and the change is

extensive (though, perhaps, conceptually simple), it

may be preferable to design the fix into the delivery,

which is now at the T level. This would delay its

implementation by perhaps six months, but it would

be the most convenient solution from the developers’

point of view, and it would ensure thorough design and

testing. It would also eliminate any possibility of the fix

being reversed by the next delivery and it would almost

certainly be the cheapest solution (Figure 14.1 shows an

example of this situation).

14.7.2	 The Rule to be Applied
If the fix is to be introduced above the T level,

precautions, partly procedural and partly managerial,

must be taken against the possibility of it being

overwritten by a later version of the software. One of

the rules governing software within the CM system

library is that there should be no movement downwards

(see Chapter 10). Software should only move upwards

through the levels of the library. The question then is,

how is this rule applied to controlling maintenance

changes?

The principle is that, with the exception of corrections

made at the L level for immediate delivery, all changes

are made at the lowest level of the library at which the

software module to be changed is the same as in the

calls to be made to best-known individuals.

As our support cover was 24 hours per day, some

of the team had modem-connected terminals at home,

but the choice of whom to contact outside of normal

working hours was limited by an agreed and published

emergency rota. The team also had direct links to all

operational systems. As mentioned in Chapter 10, they

loaded new deliveries over their links, and could exert

full control over the live systems. With terminals, they

were able to carry out all user functions, monitor system

activity, and also initiate and control diagnostic tests.

If initial tests on the live system did not solve a

problem, the team had the exclusive use of the L level of

the CM system library. They used this for carrying out

diagnostics. Having developed and tested a correction

in the programmers’ area of the library, they again used

the L level system for carrying out tests prior to delivery

of the repaired version of the software.

The first thing a maintainer should do is to obtain

as much (verbal) information about the problem as

possible. Then, as the fault could be the user’s rather

than the system’s, he should talk the user through

whatever operations seem likely to overcome the

problem or resurrect the system.

In our case, if this wasn’t successful, the maintainer

logged in and assumed control of the live system in

an effort to discover the problem — taking care not to

interrupt service if the system was still operational. If

the problem could not easily be found, the maintainer

resorted to exploring the system or carrying out

diagnostics on the L level of the CM system.

When the fault was found, an assessment was made

of its impact on the system and its users, and of what it

would take to fix it.

14.7	 Carrying Out The Work
14.7.1	 Decisions to be Made

The main question to be answered is, when should

the fix be implemented? There is a balance to be achieved

here: in many cases the users want a fault to be corrected

as soon as possible, but this increases the complexity

of handling the fix, for implementing it at the L level

introduces the possibility of its being overwritten by

a subsequent delivery. It is therefore most convenient

if the correction is deferred and included in a later

delivery. The lower the level of the library at which the

Figure 14.1: Maintenance Fix Carried Out on Version N+2 of
the System at the T Level of the CM System Library

127 Software Maintenance —

Software
Projects

We will assume, in this example, that in the next

delivery (Version N+1) there has been no change, but

that Version N+2 includes a change to those modules

(see Figure 14.2).

Once the support team leader is confident of the fix

and has delivered it to site, he arranges for its inclusion

as it stands in Version N+1, at the S level. The system

test team leader incorporates the new versions of the

modules into the system and decides what tests are

necessary for proving the fix to his satisfaction.

As Version N+2 of the system includes changes to

the modules involved in the fix, the fix as introduced

at the L level cannot be incorporated at the T level. The

fix must be redesigned, along with the other changes

to the module, into Version N+2. Thus, a specification

of the problem to be cured is passed from the support

team leader to the low-level design and coding team

leader for inclusion in Version N+2 at the T level. This

creates a change to the definition of the delivery. The fix

is therefore redesigned into Version N+2 of the system,

and tests at the all levels of the library are designed to

exercise it.

The support team leader retains responsibility for

the fix and must test for it at the L level when both

Versions N+1 and N+2 of the system arrive there.

14.7.5	 Implementation of the Fix is Deferred
If the support team leader considers that the best

course is to defer implementation, he puts the case to the

development manager. If the latter agrees, concurrence

is sought from the customer representative. As the

support team knows the system intimately, as they are

on call in case of a recurrence of the problem, and as

the decision can be reversed at any time, the customer

version which needs to be changed. Clarification of

this rule is given in the examples in Sections 14.7.4 and

14.7.5. Further, if any precautions are to be successful,

responsibility must be defined.

14.7.3	 Responsibility
In all cases, the support team leader is responsible

for ensuring the correct implementation of the fix and

its integrity in versions of the software already under

development. In most cases, his staff decide what the

fix should consist of, and design and document it. If

appropriate, they implement it in the L level version of

the system, test it there, and then implement it in the

operational systems. Then they must in all cases pass

the fix to the team leaders who have to implement it

in the other versions of the system that are already in

preparation. Later, as each of those versions reaches

the L level, the support team’s documentation for the

appropriate delivery prompts them to ensure that the fix

has been included and to test that it has been correctly

implemented. For example, in the case suggested in

Section 14.7.1, where the fix was implemented in Version

N+2 (see Figure 14.1), the support team would test for it

in that version, but not in Version N+1.

If it has been decided to defer implementation of the

fix, there needs to be a discussion between the support

team leader and the team leader currently responsible

for the delivery in which it will be included as to who

will design and develop it. On some occasions the

support team may design and develop it, on others they

may design it and leave development and initial testing

to the other team, and on yet others it may be sufficient

for them to provide a specification of the problem

to be overcome rather than a design of the fix. In no

case, however, can the support team leader relinquish

responsibility for the fix, so he must ensure that it is

implemented in the agreed delivery and test for its

presence and correctness when the delivery reaches the

L level.

14.7.4	 Implementing a Fix at the L Level
Let us suppose that the fix is to be implemented

immediately at the L level and thus in the live system.

When this has been done, the question is, what is the

lowest level at which the software modules affected are

unchanged from those at the L level?

Figure 14.2: Maintenance Fix Made at the L Level — Library
Status and Activities

Software
Projects

128Software Maintenance —

are, they should be justified and a fall-back position

determined. Again, it is pointed out that testing is most

effective when the risks involved are identified and

understood.

Alternative to passing the changed modules straight

to the S level is to carry out integration testing at the

I level. This is always preferred if there is time, and

always essential if the risks attached to a bug existing

in the operational system are too great.

Once the fixed modules arrive at the S level, the

system test team leader must decide what tests are

necessary for gaining confidence, at that level, in the

integrity of the fix. Remember that testing is a risk

management activity, and that what the designer of

tests is doing is assessing the risks involved in failure,

and planning a means of acquiring confidence that

they have been reduced to an acceptable level. As the

fix was not a part of Version N+1 from the beginning,

the previously designed system tests will not cater for

it. However, there is now the certainty that the tests on

Version N+2, at all levels, will be redesigned to exercise

the fix formally and thoroughly, so bugs which slip

through in Version N+1 should be detected in the testing

of Version N+2. So the system test team leader must use

judgement. There is also the back-up of the continuing

responsibility for the fix of the support team leader who

must check for its presence and effectiveness in both

Version N+1 and N+2 when they arrive at the L level.

When Version N+1 has passed its system tests, it

is passed up to the U level and, eventually, via the L

level, to the systems in the field. Occasionally, the work

involved in this type of deferred maintenance causes a

delay to a delivery, but extra pre-delivery effort (which

comes to be a planned part of the support team’s

schedule) usually avoids this.

14.8	 Module History
If a module or unit of software had a version number

which it retained as it moved up the levels of the CM

system library, changes made anywhere above the T

level would put the version numbers out of sequence.

To avoid such a complication, version numbers are not

used by the CM system for individual software units

(only for complete versions of the system). Instead, use

is made of the ‘generation number’ (see Chapter 10)

which is updated each time a module is updated or

representative would usually accept the support team

leader’s recommendation.

How a fix might be implemented when deferred is

shown in the following example.

Let us suppose that it is decided to introduce the fix

in the delivery of Version N+1, which is, as shown in

Figure 14.3, now undergoing system tests at the S level.

Version N+1 must remain at the S level until the

fix has been included in it. However, the fix must be

made at the lowest level that the software modules are

consistent with those at the S level, so, if the modules to

be changed are the same in Version N+2 as in Version

N+1, the change must be made at the T level. In this

example, let us assume that Version N+2 includes no

change to those particular modules.

The fix is therefore made and tested at the T level

and the changed modules passed to the I level. There

they may be integrated and subjected to new integration

tests before being passed to the S level. If by now the

schedule for Version N+1 to be passed up from the S

level is behind schedule, it may be decided to pass the

changed (‘fixed’) modules straight on to the S level to

replace their previous versions which have until then

been a part of the Version N+1 system. The justifications

for this are that, first, there will be tests at the S level

which could detect any faults in the fix, second, the L

level team will be available to deal with any problems

in operation if a fault did slip through into the delivered

system, and third, that the tests at the S level, though

carried out in parallel with the further progress of the

fixed system, should uncover any faults, perhaps in

time to correct them before Version N+1 is delivered to

site from the L level. This is not a recommendation not

to test at the I level, merely a reminder that in practice

compromises sometimes need to be made. When they

Figure 14.3: Maintenance Fix Deferred to T Level — Library
Status and Activities

129 Software Maintenance —

Software
Projects

the HOLD command, and this would create a new

version of the module with generation number 4.

14.9	 Documentation
The two examples in Section 14.7.4 and 14.7.5

demonstrated the procedures for incorporating

maintenance within the CM system. Maintenance

changes also need to be documented.

Because of the definition of maintenance (see Section

14.2), it is given that the specification of requirements

needs no change. The question then is, did the error

first occur in the design, or in the software itself? The

design documentation is, therefore, checked as part

of the support team’s maintenance procedure. If the

design is found to be incorrect, the correction to it is

documented and verified, and thus included in the next

formal issue of the design documentation.

In all cases, the issue of up-to-date documentation for

the software is automatic, as this is an integral function

of the CM system and a part of the software production

process. With each module and unit of software, the

programmer must produce descriptive documentation

in conformity with project standards, and this is

enforced by the CM system. Quality assurance should

always include checks for conformity to standards.

In all cases, too, the problem is recorded in the

maintenance log, and all time taken in repairing

the fault, at all levels, is recorded and accrued against

quality-related costs.

14.10	 One Further Possibility
It was shown in Chapter 10 that the processes of

building and testing a system and documenting its

configuration profile at the L level require that the

system is moved from the U to the L level up to two

weeks before it is due to be delivered to site. During

this period, the L level does not contain an exact replica

of the live system, and efficient maintenance may be

compromised.

The first thing to note is that, as a last resort, the live

system can be regenerated at the L level. This, however,

is avoided if possible, and the usual preference of the

support team is to implement a fix in the new version

of the system and to accelerate its delivery. This implies

having to create, in the new version, the conditions

under which the failure occurred. If the failure repeats

replaced at a level.

Briefly, what happens is this. When a module enters

a library level for the first time, it acquires generation

number 1. Then, it can only be updated at that level by

use of the HOLD command. When this happens, its

generation number is incremented, and this carries on

for as long as the module exists at that level. When it is

moved up to the next level for the first time, it acquires

generation number 1 there. It thus obtains an identity at

each level, and this is updated to reflect the number of

times it is altered at that level.

There is one case where caution may need to be

applied, and that is when a changed module is passed

up the levels to replace an earlier incorrect version of

the same module, as in the example of Section 14.7.5

above. Then the change to the existing module at the

given level does not result from the use of the HOLD

command. Three points are worth making.

The first is that because the fix is made at the lowest

level at which the module is unchanged from its

versions at higher levels, when it reaches a given level

it should functionally be the same as its earlier version

when that reached the level in question. This means that

the manager with responsibility for the level is ‘starting

with a clean slate’. However, the other two points to be

made are in consideration of possible complications.

The second point is that if the title of the module

is the same as that of its predecessor, it should

automatically receive a generation number equivalent

to its predecessor’s incremented by 1. In other words,

the system should be such that a module cannot exist

at any level in two versions with the same generation

number.

The final point is that a check must be made of

whether changes had been made to that module at

that level prior to the arrival of the new version. Let us

consider an example. Module X arrives at the S level and

is accorded generation number 1. During system testing

a change is made to it by use of the HOLD command,

and its new version now carries generation number 2.

A fix is made to the same module at a lower level and a

new version with the same name arrives at the S level

and is given generation number 3. We must now ensure

that the necessary change which was earlier made at the

S level is included in the module. If it was not included

in the fix at the lower level, it must now be made, using

Software
Projects

130Software Maintenance —

disguise of maintenance after the system has

been accepted into service.

•	 The traditional definition of software

maintenance has only been justifiable if the

system has been delivered in one ‘big bang’

— and even then it should have entered

its operation and maintenance stage in its

completed state rather than with some of its

original specification still to be met.

•	 Customer satisfaction is not the result of an

objective recognition of correctness; it stems

from a subjective perception of all contributing

factors, including speed of service, attitude,

politeness, and feedback.

•	 When people are wary of each other, their

eagerness to find differences in their views

seems to be stronger than their will to agree.

•	 By putting clearly defined procedures in place,

and managing them, all parties are enabled to

have a clearer and more realistic view of what it

takes to implement a development project.

•	 The design of a maintenance procedure

must be integrated into the software control

mechanisms, and the staff organization and

management should match the procedure.

•	 Maintenance is not only procedural but

managerial as well:

•	 by its nature, it must be based on decisions taken

in the light of current evidence ... Procedures

should be a framework for management

responsibility, decision and action.

•	 Principles should be defined for the management

of maintenance procedures, and for the

interaction of managers in the development

organization in conducting and monitoring

maintenance work.

•	 Maintenance consists not only of product care,

but of customer care as well.

itself, the fault can be diagnosed, and the fix produced,

tested, delivered, and built into later deliveries, as

already described. If the failure does not occur, it may

be hypothesized that the particular fault that caused it

is not being delivered in the new version. This is not

always a wholly correct assumption, but one could

waste a great deal of time testing for the fault.

As far as maintenance goes, the support team

manager must use discretion in determining the risk

involved in bringing the new version into service.

In many cases the risk is not great, for once the new

version is in operation, its replica will exist at the L level

and maintenance can again be optimized, as described

above. For safety-related systems, this would not be a

satisfactory situation — but, then, ED of such systems

may not be either. Given the particular circumstances,

development and project managers must decide on

what guidelines to provide to maintenance (support

team) managers and what discretion to allow them

within the guidelines.

14.11	 Summary And Extracts
This chapter has shown that a tight definition of

software maintenance is required for evolutionary

delivery, and it has provided an appropriate definition.

It has explained in detail a maintenance process

for ED and given examples of how the configuration

management system defined in Chapter 10 is used

to facilitate and control the process. Project and

development managers could base a procedure for

maintenance appropriate to the circumstances of their

own projects on this.

 The following are extracts from the chapter.

•	 To give the impression of a project being

completed on time and within budget, project

managers may compromise on meeting the

specification and deliberately leave development

work undone, to be carried out under the

131 Evolutionary Delivery Culture

Software
Projects

objectives are easily definable.

What is the goal of an ED project? It cannot be to

‘meet the specification’, for it is recognized at the outset

that there will be changes, perhaps numerous and far-

reaching changes, to the original specification. Can our

goal be to meet time or budget criteria? If we cannot be

definitive in the specification, on what can we estimate

the necessary time and budget? We need to reconsider.

Estimation is not merely obtaining an idea of the

project’s likely time and resource requirements. It also

provides the basis for defining the project’s terminating

criteria and judging its success. A reassessment of

these issues implies a re-evaluation of the culture

necessary for the success of ED projects, in both senior

management and the developers.

15.2	 Project Goals
If the goal of a development project is not to meet a

defined specification, what is it? If we step back from

the specification and inquire into the more fundamental

reasons for the project, we arrive at the business

objectives. In many, if not most, waterfall model

15.1	 The Issues
Traditionally, the objectives of a project manager

have been stated as: to complete the project on time,

within budget, and to specification. Almost invariably

in software development projects at least one of these is

not met, and too frequently none is met (typical causes

of failed projects were discussed in Chapters 3 and 4).

The three objectives are simple to state and simple

to understand. Management understand them and set

them as their criteria of judgement of a project, and

two of them at least — time and budget — are easy to

measure. There are of course games which are played

to contrive project success. For example, the completion

(at last) of a late and over-budget project may be

celebrated with a fanfare — because it meets the last

agreed completion date and budget (perhaps agreed

only a couple of months earlier). Or a project manager

may compromise the specification so as to ‘complete’

the project within the defined time and budget, leaving

the developers to continue the work of developing

the system under the heading of maintenance. But

such devices are contrived knowingly, and at least the

15
Evolutionary Delivery

Culture

Software
Projects

132Evolutionary Delivery Culture

business objectives for the project. But how are these

translated into estimates of budget and time?

The answer is that they cannot be translated directly,

because the business objectives are stated at too high a

level. They do not contain the detail (for instance, that

contained in a requirements specification) which allows

decomposition into system functions, the deduction of

the tasks necessary for creating the functions, and thus

the time and resources needed to carry out the tasks. So

we cannot make confident estimates from the objectives;

we need a specification for that. It was pointed out in

Chapter 9 that in ED we need a good specification to

start with. From this we can make estimates, and these

may be used as a first approximation to what we expect

of the project.

Prior to a specification being prepared, however,

senior management needs to devote greater

consideration to the value of meeting their objectives.

When one or more business objectives are to be met

by a computer system, there should be an estimate by

senior management of what those business objectives

are worth and whether there are time constraints on

them (for example, if a new product is to be competitive,

it may need to be developed within a certain time,

and it may be uneconomical to take longer to produce

it). The developers (via the project manager) should

be asked if they can meet the objectives at a certain

budget and within a given time — and in most cases a

feasibility study would be carried out to determine the

answer. As pointed out above, a statement of business

objectives is usually at too high a level to allow reliable

time and budget estimates to be deduced directly, so

the feasibility study would involve the determination

of the main functions necessary to meet the objectives

and the capture of the principal requirements necessary

to those functions. This would result in a quickly

produced partial specification for the purpose of initial

approximate estimates.

If the feasibility study suggests that the developers

could not meet the stated objectives within the defined

constraints, the reasons should be examined. Often,

compromises can be made. Perhaps the objectives

can be pruned so that an adequate system can be

developed within the defined constraints; sometimes

some objectives can be met within a given time while

others are deferred — and ED is particularly useful in

projects, the business objectives hardly play a role:

they are not determined, or not communicated to the

project manager, or communicated only vaguely, or not

used as the basis of monitoring the project. The result is

that they often are not met. But at least in such projects

there is the specification to fall back on. Success can be

claimed if the system meets the users’ requirements.

But are the users’ requirements and the business

objectives not the same? No. The users’ requirements

are means of meeting the business objectives — if they

are specified in accordance with them (see Chapter

7). But if the users’ requirements are not specified in

accordance with the business objectives, adhering to

them leads to a strategically ineffective project (and

system). Moreover, even when they start out meeting

the business’s strategic needs, the users’ requirements

can alter drastically during the project — hence the

need for the participation of a strategic representative.

However, a strategic representative is not a common

component of waterfall model projects.

In ED, it is possible for there to be so little change

to the requirements during the project that the original

specification retains its integrity throughout. Don’t

count on this, but if it happened, success could be

claimed for meeting the specification. However, in

general, experience shows that it is essential in ED to

be clear about the business objectives for the project,

and to monitor both project progress and requests for

change against them. This requires a change in the

culture of both senior management (in the customer’s

organization) and project management.

In an organization commissioning ED projects,

the senior managers need to develop the culture

of thinking strategically, planning strategically,

expressing their strategic plans so that they are clear

to their organization, and monitoring effort (including

project effort) against the strategic plans. It may be

argued that this should be the case in all organizations,

and I would agree, but in most it is not so. In ED, the

business objectives are essential as project goals.

15.3	 Estimation
Typically, senior management bases its approval of

a project on time and budget estimates. If in ED we are

aiming at a moving target, how can we with confidence

make predictions? Again we must have recourse to the

133 Evolutionary Delivery Culture

Software
Projects

advantages of a consistency of approach, but at some

organizational level there need to be wise decisions

on their use. They should be tools to be used to best

advantage by thinking project managers.

Regular reappraisal suggests that in some cases it

may be appropriate to cease the project. An advantage

of ED is that if a project were abandoned, there would

usually be an operational system, and if there had been

an effective prioritization process, the functions in

operation would be among those of greatest value to

the users and the users’ business.

In our projects, there was perpetual change, due

not only to new functions being called for, but also to a

continuous perception by the users of ways to improve

those which had already been delivered. In advance it

was impossible to forecast the project time or budget,

for the changes could not have been predicted. How,

in such circumstances, can criteria for the termination

of the project be defined? Reappraisal offers repeated

opportunities to abort the project if the gains are not

commensurate with the investment in them. But there

may be circumstances in which it is advantageous to a

business to allow ‘project drift’ away from the objectives.

This suggests a further criterion for continuing the

project.

If more is being provided than was originally

intended, those who want the added features would

argue that they are essential. But are they worth what

is being spent on them? A relevant question is whether

or not they are within the original objectives for the

project. If they are, then, as additional functions, they

need to be assessed for strategic concurrence by the

strategic representative on the project. If they are not

within the original objectives, then it is the objectives

rather than the functions that need to be reappraised.

The culture of regular reappraisal of ED projects

implies not only determining strategic objectives

but also, and importantly, working to them — and

monitoring the work to make sure that it remains

within them. It calls on senior management not to

leave system development projects to end users and

inexperienced project managers, but to define them

and their criteria for success and to appoint competent

and experienced project managers. It calls on them to

understand projects, and to demand that their project

managers plan and monitor projects according to the

allowing such a compromise.

Then, given clearly defined objectives, with value

and time constraints which have been shown by a

feasibility study to be reasonable, a specification may

be drawn up and more accurate estimates based

on it. If the estimates are much different from the

previously defined constraints, now is the time to

resolve the problem, not with the users but with senior

management. This process follows that proposed in

Section 9.3 of Chapter 9.

Thus, instead of a project being approved because it

seems a good idea, it should be subjected to checks for

its value and for the feasibility of completing it at a cost

(in time and budget) equal to or less than its value. This

brings senior management far more into the business

of project definition and assessment than hitherto. It is

a change which is long overdue, and would benefit not

only ED projects but waterfall model projects as well.

15.4	 Reappraisal
Once the project has commenced, the project

manager should review it regularly, with respect not

merely to the requirements specification, but, more

importantly, to the defined business objectives. With

such a basis for monitoring, it would not be acceptable

to run out of money or time unexpectedly. The project

manager would need to detect well in advance that

progress was such that the objectives would not be met

within the budget or time, or both. Immediately, senior

management would be approached for a reappraisal of

the project, and, given that there are good reasons for

the impending failure, questions such as the following

would need to be raised: Are the business objectives

worth more than we previously determined? Would

they still be valid if we spent more time meeting them?

Should we terminate the project?

When the progress of a project is monitored against

objectives rather than against the completion of tasks,

project managers need to be prepared to change course

when necessary and to use judgement to determine

when it is necessary (see [Worsley 97]), that is to say, they

should be prepared to vary their tactics appropriately

so as to meet the strategy — and this cannot be done

if there is a determination only to follow procedures.

Procedures are rules for those who do not possess a

deeper understanding, and for achieving the various

Software
Projects

134Evolutionary Delivery Culture

15.6	 Customer Participation
Senior managers tend to be busy, and it is unusual

for them to perceive project participation as having a

high-priority call on their very full days. Yet, in many

places in this book I have emphasised the importance

of the involvement of customers in their projects. The

‘customer representative’ (see Chapter 8) is defined not

only as sitting on the project board but also as having a

number of responsibilities (such as approving requests

for change) and being available to make decisions (such

as regarding the priority of functions to be developed).

These tasks are not trivial. Not only are they important

to the smooth progress of the project (and so affect the

efficiency of the developers), they are also important to

the nature of the product (and so affect the effectiveness

of the project). To discharge them conscientiously, and

thus to provide value to their own businesses, customer

representatives require time and an understanding

of the required system. Until senior managers who

are customers take their projects seriously, recognise

their involvement in them as an essential part of their

job rather than an inconvenient diversion from it, and

accord them the time they need, their projects will

continue to fail or to result in ineffective systems (which

amounts to failure, though it may be concealed).

Many development projects cost millions of pounds

or dollars. Yet, many customers treat them less seriously

(both in defining their objectives and in their personal

involvement) than the purchase of a car. But customer

participation is crucial, not only at the requirements

stage, but at all stages. Those projects in which

continuous participation is seriously invested are the

ones most likely to produce systems which satisfy real

business needs.

15.7 Culture Of The Developers
It was observed in Chapters 11 and 14 that

after the first delivery there are four categories of

work to be done on the software: 1.	 C o nt i nu i n g

development according to the original specification; 2.	

Developing newly specified functions; 3.	M o d i f y i n g

delivered software which, although in conformity to

its specification, does not to meet the users’ current

requirements; 4.	Correcting software which does not

meet its specification.

Given the need to distinguish between the work

objectives and assess the project results against the

defined criteria for success.

Moreover, it calls on senior management to be

careful how they judge the success of a project.

15.5	 Judging Success
In our early days on ED projects, we found that we

worked harder than ever to keep up with the changes

which the users and customer representative requested.

We found too that our work was not recognized because

our achievements did not meet the traditional success

criteria: we did not meet the specification within the

estimated time and to the defined budget.

At first, we responded to changes until we became

submerged in them. Gradually, we improved the

situation by evolving change-control and prioritization

procedures and better relationships with the system’s

users. In doing so we achieved a great deal — in

retrospect that is clear — and after a year we had a

better relationship with our users than we had ever had

before. They were pleased with our mutual relationship

and pleased with the deliveries which they received.

But senior management were not the users. They did

not see or touch the system. Their criteria for success

were based on the early estimates of budget and

time to meet the initial specification (on which their

authorization of the project was based). When, after

two years, we had not approached completion, we

were seen by senior management as having failed. The

demoralization of the staff was huge. They had worked

long hours, achieved greatly, and satisfied those who

had previously been antagonists (the users), only to

find that according to inappropriate criteria they were

deemed to have failed. Moreover, the judgement of

failure was passed by those with the greatest influence

— but the least understanding. It took some time to

rekindle morale.

Senior management need to have different criteria of

success for ED projects. Their criteria need to be based

on strategic planning and business objectives. If this

will take a long time to come about, project managers

should not wait passively for it. They can change the way

in which senior managers view projects by providing

them with appropriate information — as suggested in

Section 15.7.

135 Evolutionary Delivery Culture

Software
Projects

do not, it is you and your staff who will suffer, for you

will forever be striving to meet impossible targets. (‘So,

what’s new?’ you may ask. But that’s another issue.)

As for the developers’ culture, I would like to end

with a couple of remarks, one on quality and the other

on relationships with users.

With regard to quality, it is not often that I come

across a development team with a real understanding

of it. Almost all want to do a good job, few would

intentionally do a bad one, and many adhere to certain

quality procedures, such as carrying out document

reviews. But adhering to a procedure or meeting a

standard is not the end of it. Having five or six people

review every document may achieve a high level of

quality (and it may not), but is it in every case cost-

effective? What would have been the penalty for missing

one or two of the errors that were found? What might

we have lost if in one case we only used three people on

the review? Procedures tell us what to do, but not how to

judge. Unless we develop an understanding of quality,

we will not develop judgement of how to achieve it; and

we are unlikely to achieve it cost-effectively.

I believe that one problem is that development

managers and team leaders do not invest sufficient

responsibility in team members for the quality of their

work. If instead of decreeing that certain quality assurance

procedures should always be carried out, managers

called on each individual developer to achieve, assess

and justify the quality of their work, it would create both

a need and an incentive to understand quality better and

to be more judgemental in achieving it. While the ideal

is always to achieve and assure high quality, it is also

true that there are times when we need to balance risks.

Yet, few developers consider the cost (the risk) involved

in poor quality when they are under pressure to meet an

impossible (or merely difficult) deadline.

Unless we understand the cost of poor quality,

quality remains in the procedures rather than in our

culture. In Chapter 14 I mentioned that in our team

we defined maintenance as a quality-related cost. This

had a salutary effect on the developers. ‘What does

that mean?’ they were prompted to inquire. It meant

that faults in the software caused us to divert highly

skilled people from development to maintenance,

creating a debit of time and money on the project. The

initial question had been answered, but the debate had

done on the four categories, we developed a culture of

accounting. The development manager inculcated into

the team leaders, and the team leaders into their teams,

an understanding of the four categories of work and

of the importance of accounting for their time spent

on them. Each week we documented the manner in

which our time was spent, and we began to include

these records in the project manager’s monthly reports

to senior management. When we were questioned as

to progress, we presented our records, which often

showed more effort being invested in making changes

than in progress against the original specification. We

took opportunities to emphasise this point to senior

management, and to explain the reasons for it, until

they began to understand ED, the demands which were

placed on the developers, and the way in which the

projects were progressing. To avoid misunderstanding,

we also emphasized the benefits of ED, and we

encouraged the users to bring these to the attention of

their own management. We demonstrated how the real

requirements differed from the original specification,

and why meeting them was an evolutionary process.

Slowly, a culture change began to take place. Slowly, the

criteria for project success evolved away from simply

meeting original estimates.

(Note that I am not advocating carte blanche for the

developers, but rather a recognition of the impossibility

of estimating accurately in the face of unpredictable

change. Estimates should certainly be made, and

planning and monitoring should be based on them for

the requirements on which they were made. But their

continuing validity should be monitored. Changes

should be valued, as proposed in Section 15.4, and new

estimates made for them. The trouble comes when old

estimates are used as criteria for success after they have

ceased to be valid.)

I suppose that the most likely readers of this book will

be developers and project managers. If you are involved

in, or going to be involved in, an ED project, note the

need for a new culture, not only in the developers but

also in senior management. (If you are involved in

waterfall model projects, you may also recognize the

need for a new culture there.) If senior management are

not already strategic thinkers and planners, they are

unlikely to initiate the change, so it is you who must

help them to understand the new needs of ED. If you

Software
Projects

136Evolutionary Delivery Culture

Following rules gets us some way towards success

much of the time. But being highly successful most

of the time depends on more than that; it depends on

those attributes, such as attitude, which determine our

culture. Procedures and standards are necessary but not

sufficient; if we want quality software, we developers of

software must develop our attitude, our understanding

of quality, our psychology, and our professionalism. We

must manage better and delegate more responsibility.

Our expectations of our staff must increase. We must

become better managers, better engineers, and more

professional.

The following extracts make a few of the points of

the chapter.

•	 Estimation is not merely obtaining an idea of the

project’s likely time and resource requirements.

It also provides the basis for defining the

project’s terminating criteria and judging its

success.

•	 If the users’ requirements are not specified

in accordance with the business objectives,

adhering to them leads to a strategically

ineffective project (and system).

•	 Senior management needs to devote greater

consideration to the value of meeting their

objectives.

•	 When the progress of a project is monitored

against objectives rather than against the

completion of tasks, project managers need to

be prepared to change course when necessary

and to use judgement to determine when it is

necessary.

•	 The culture of regular reappraisal of ED

projects implies not only determining strategic

objectives but also, and importantly, working to

them — and monitoring the work to make sure

that it remains within them.

•	 Senior management need to have different

criteria of success for ED projects. Their criteria

need to be based on strategic planning and

business objectives.

•	 Those projects in which continuous [customer]

participation is seriously invested are the ones

most likely to produce systems which satisfy

real business needs.

•	 The trouble comes when old estimates are used

only begun. It led to a deeper interest in quality and a

deeper understanding of it. Such an understanding can

lead to a quality culture rather than a quality regime

(see [Levene 97]). With so many interactions in an ED

project of any size, with so much testing and so many

points at which it is necessary to assess the risks before

committing resources to something, a genuine quality

culture in the development team is important. What

is more, such a culture rubs off on anyone who works

closely with you, for they cannot help but perceive

its ‘rightness’. Users and developers on other teams

begin to see things in a new light. Sounds magical,

doesn’t it? But such a culture does not develop on its

own, nor overnight. It requires insightful leadership

over a prolonged period. If you are a project manager

or development manager, start planning next year’s

changes now.

The second matter that I want to remark on is the

developers’ relationship with the users. The better and

more open it is, the better the chance of a successful

project. In fact, we found that the greatest asset to the

project was a close relationship with our users. Regular

communication with them, through both formal

meetings and informal encounters, is essential. You

want them to appreciate your deliveries, to respond

with feedback on how they can be improved, and also

to understand why you cannot meet all their demands

all of the time. So work closely with them, tell them

your problems and listen to theirs. And tell them the

truth. If that’s not a new culture, good for you, but in

most cases it will be.

15.8	 Summary And Extracts
This chapter has examined the culture required for

successful evolutionary delivery projects. It has made

recommendations, many of which are also applicable to

waterfall model projects.

In particular, the following subjects were discussed:

the use of business objectives as the foundation of

projects, the need to reassess how the judgement

of success or failure of a project is determined, the

participation of senior management in the definition

and management of projects, the basis of estimation

of project time and budget, the relationships between

developers and users, and the understanding and

judgement of quality.

137 Evolutionary Delivery Culture

Software
Projects

as criteria for success after they have ceased to

be valid.

•	 Procedures tell us what to do, but not how to

judge. Unless we develop an understanding of

quality, we will not develop judgement of how

to achieve it; and we are unlikely to achieve it

cost-effectively.

•	 Such a [quality] culture rubs off on anyone who

works closely with you, for they cannot help but

perceive its ‘rightness’. Users and developers on

other teams begin to see things in a new light.

•	 We found that the greatest asset to the project

was a close relationship with our users.

Software
Projects

138 References

[Boehm 88]
Barry W Boehm: A Spiral Model of Software Development
and Enhancement. Computer, May 1988

[Checkland 90]
Checkland P B and Scholes J: Soft Systems Methodology
in Action. John Wiley & Sons, Chichester, UK, 1990

[Fagan 76]
Fagan M E: Design and Code Inspections to Reduce Errors
in Program Development. IBM Systems Journal 15 (3)
1976

[Ferraby 91]
Ferraby L: Change Control During Computer Systems
Development. Prentice Hall International (UK), 1991

[Glass 81]
Glass R L and Noiseux R A: Software Maintenance
Guidebook. Prentice-Hall, New Jersey, 1981

[ISO 91]
International Organisation of Standardisation: Quality
Management and Quality Assurance Standards - Part
3: Guidelines for the Application of ISO 9001 to the
Development, Supply and Maintenance of Software.
ISO, 1991

[Levene 97]
Levene T: Getting the Culture Right. In Redmill F
and Dale C (eds): Life Cycle Management for
Dependability, Springer-Verlag, UK, 1997

[Martin 83]
Martin J and McClare C: Software Maintenance — The
Problem and its Solution. Prentice-Hall, New Jersey, 1983

[Redmill 88]
Redmill F J, Johnson E A and Runge B: Document
Quality Inspection. British Telecommunications
Engineering 6 (4) January 1988

[Redmill 89]
Redmill F J: Computer System Development:
Problems Experienced in the Use of Incremental Delivery.
Proceedings of SAFECOMP ‘89, Vienna, December
1989

[Redmill 97]
Redmill F: Practical Risk Management. In Redmill
F and Dale C (eds): Life Cycle Management for
Dependability, Springer-Verlag, UK, 1997

[Swanson 76]
Swanson E B: The Dimensions of Software Maintenance.
Proceedings of 2nd International Conference on
Software Engineering, IEEE Computer Society,
October 1976

[Worsley 97]
 Worsley C and Lee L: Third Generation Project
Management. In Redmill F & Dale C (eds): Life Cycle
Management for Dependability, Springer-Verlag, UK,
1997

 References

JAGraphics: Publishing for Phaedrus Systems
96 Brambling, Tamworth, B77 5PG

JAGraphics
JAGraphics is the publishing arm of Phaedrus Systems
It publishes material for the developers of safety-critical
and high-reliability systems including:

Application notes
How-to guides for using and integrating development
tools.

Lecture notes
A series of lectures on system development including
material on improved process flow, the use of the
MISRA Coding Guidelines and other topics.

QuEST Library
A series of documents on all aspects of embedded
development.

More Information
As the publications list is changing rapidly, please
check the latest publications at -

http://library.phaedsys.com

ISBN 978-1-910888-00-1

