
Integrating
PC-lint into

IAR Embedded
Workbench

Second Edition

 by

Eur Ing Chris Hills BSc (Hons),

C. Eng., MIET, MBCS, FRGS, FRSA

The Art in Embedded Systems
comes through Engineering discipline.

PC-lint-EWB

PC-lint-EWB

2library.phaedsys.com

Contents

Background 3

Configuration of the PC-lint files 3

Integration into IAR Embedded Workbench 5
PC-lint set up for Single File Analysis
Pre-defined Macro file . . 5
Move Configuration files . 6
Set up tools dialogue . 6
Configure to include directories and
project specific items . 7
Test the configuration . . 8
PC-lint set-up for Multiple File Analysis . . 8

Using PC-lint: Don’t shoot the messenger 8
General . 9
Warning levels . 9
Managing messages: options . 9
Strong typing in C . . 10
Indentation . 10

The last word 11

References 11

PC-lint-EWB

3 library.phaedsys.com

Integrating
PC-lint into

IAR Embedded
Workbench

The most effective way of doing static analysis

is to do it frequently as the code is written from

within the code development IDE. This app note

will explain how to integrate PC-lint into the IAR

Embedded Workbench (EWB) to permit continuous

static analysis as the source code is written.

Background
In 1976, before the C language was even complete,

Johnson (part of the C and UNIX team with Kernighan,

Ritchie & Thompson) had created static analysis and

the first lint (Johnson 1979) because programmers

were, according to Dennis Ritchie, using “legal but

dubious constructs” (Ritchie 1993). A compiler translates

syntactically correct source even if it is semantic rubbish.

Some simple examples of this include assigning a long to

a char and losing 3 bytes of data; falling foul of integer

promotion rules, which most people misunderstand;

having a local variable inadvertently mask a global

variable - the list goes on and on.

Due to the “trust the programmer” ethos around

the C language, static source code analysis is required

to find all the legal but very dangerous things that

can inadvertently get into the binary. Therefore static

analysis should be used frequently. Static analysis looks

at the source logically, without compiling and running it,

hence “static” analysis. Static analysis can find up to 80%

of non-functional bugs very quickly. Trying to find these

same bugs dynamically within a running system would

require extremely long and complex testing.

 PC-lint from Gimpel has been around since 1985 and

has proved itself over the decades. PC-lint is the best

“bang per buck” tool you can get for static analysis. It is a

simple command-line tool of the UNIX/dos philosophy

and the lack of GUI means it can be integrated into most

IDEs and make or build systems.

PC-lint removes any excuse any programmer has for

not using static analysis on C or C++ code.

Configuration of the PC-lint files
PC-lint is extremely flexible and the C language has

many dialects or variations associated with the many

compilers and target architectures in use. Potentially,

therefore, there are very many switches and options that

PC-lint-EWB

4library.phaedsys.com

need to be set. In addition, there are configurations for

the IDE integration, compiler and project paths.

Fortunately, this is normally a one-off procedure and

most of the sets of options have already been set up in

pre-written configuration files. These options are in the

form of switches for the specific C used in the compiler

for a particular target MCU, for the IDE environment

and for the various coding standards, such as MISRA-C.

The PC-lint configuration files are ASCII text files

and are human readable and editable. The switches will

require the PC-lint manual for interpretation, as they

are somewhat terse in the best traditions of UNIX. For

example these three modifications of message 401

e401 /* symbol not previously declared

static */

+elib (401)

append (401, [MISRA 2004 Rule 1.2])

Normally the amount of manual switch setting is

minimal. These will normally be mainly for the include

paths for the project .c & .h files and system .h files.

They do require care and full explicit paths should be

used with the path in “”. Spaces and non-alphanumeric

characters are not recognised by PC-lint and, as with

UNIX, characters such as -, + etc act as switches or

commands and can have unforeseen effects. Usually

getting the include paths set up is the most troublesome

task for the first use of PC-lint.

For the IAR EWB there are four configuration

files required, three of which are provided and one is

generated by the compiler. The three provided are:

1 iar-co.lnt This is the generic IAR compiler file

which is used for all IAR compilers. This works

because IAR uses the EDG Parser and Dinkumware

iar-co.lnt
generic IAR compiler le

DO NOT EDIT

IAR
Workbench

IAR-ewarm.lnt
environment interface le

DO NOT EDIT

IAR-co-arm-V6.lnt
compiler & project specic

interface le

Edit le paths

set global warning level

IAR Project include le paths

PC-Lint MISRA-C cong le
DO NOT EDIT

IAR pre-dened Macro le
DO NOT EDIT

IAR System Library le paths

IAR System include le paths

File structure for PC-lint to IAR EWB intergration

Lint-nt.exe

Library across the whole range of compilers. This

file should NOT be modified.

2 iar-co-***[-v*].lnt This is the architecture

specific IAR compiler file. For example iar-co-

ARM-v6.lnt is for the IAR V6 ARM compiler. Some

architectures have one file, whist others, like ARM,

have several (e.g. V4, V5, V6). This file will need

editing during set up as it contains all the system

and project library paths.

3 iar-ew***.lnt This is the EWB environment file

e.g. iar-ewarm.lnt. This sets-up the integration to

the EWB, so PC-lint messages are shown in the output

window. It calls the other two compiler files above.

NOTE: this file contains several non-visible

Control-A characters, which get the hyperlinks in

the EWB message window. (See the IAR app note

Browse your Application (Sporrong 2011) on the use of

hyperlinks in EWB.) This file should only be looked

at in the EWB editor, not a standard text editor. If you

do view the file in a text editor do NOT save the file

or the Control-As are likely to disappear. This file

should NOT be modified.

4 In addition to the three IAR files provided you will

need to generate a predefined macros .h file. This

file is generated by the compiler, as described below.

This file should NOT be modified.

If you are using MISRA coding guidelines, then

you will need the Gimpel-supplied MISRA-C file

(MISRA-C:1998, MISRA-C:2004 or MISRA-C:2012.)

 NOTE: Due to the way MISRA-C was developed, there

is no approved method, or approved error messages, for

static analysers to report MISRA rules violations.

PC-lint-EWB

5 library.phaedsys.com

Integration into IAR
Embedded Workbench

The following will explain how to set up the IAR

Embedded Workbench (EWB) with PC-lint to analyse

single files or complete projects with multiple files.

Both the single file and multiple file set-ups should be

completed, as some classes of problems and errors only

appear across the whole project if there are multiple

files. You should set up for single file analysis first, as the

notes below contain the full instructions. The multiple

file section has the additional modifications for multiple

file analysis you need to apply after setting up single file

analysis.

We assume that you have both the IAR Embedded

Workbench and PC-lint correctly installed on your

computer. These configurations files assume that PC-

lint is installed to C:\lint with the configuration files

in C:\lint\lnt. You can install PC-lint to a different

location but this will require editing the environment

configuration file. Before doing this, please see the note

above on Control-A embedded in the file. The EWB editor

is suitable for editing the environment configuration file

as it correctly handles the Control-A characters.

PC-lint set up for Single File Analysis
Pre-defined Macro file

The first thing to do is to create the pre-defined

macros .h file. Open Embedded Workbench with your

project. This assumes you have EWB set up with the

classic three-window view: the message window along

the bottom and the project window to the left of the

editor window.

The first thing to do is to create the pre-defined

macros .h file. Open Embedded Workbench with your

project. This assumes you have EWB set up with the

classic three-window view: the message window along

the bottom and the project window to the left of the

editor window.

1 Right click on the project root in the file window in

EWB and select Options in the pop-up menu.

2 In the Options dialogue select the category C/C++

Compiler

PC-lint-EWB

6library.phaedsys.com

3 In the C/C++ Compiler dialogue you need to select

the Extra Options tab. The list of tabs appears

to go from Language 1 to List. Next to the List

tab you need to use the small right arrow to go to

the actual end of the tabs, the last one being Extra

Options.

4 In the Extra Options dialogue, enter the line

below:

--predef_macros C:\lint\lnt\iar-ewarm-

predefined_macros_for_PC-lint.h

 The command is –predef _ macros which outputs

all the pre-defined macros to the file following. You

need to ensure the directory part of the command is

the actual location of PC-lint on your computer. You

can name the file anything you like but consistency

is important as you may use lint with more than one

compiler or project.

5 Do a build all to generate the file. The build all

forces a compile of all files whereas a build will only

re-compile files that have been changed.

6 Save the pre-defined macros .h file to the lint

configuration file directory - in this example to C:\

lint\lnt.

7 Having generated the pre-defined macros file go back

to the Extra Options dialogue and unclick the Use

Command Line Options, otherwise a file will be

generated on every compile for one or more files. It is

probably best to also remove the line completely from

the dialogue, even with the check box de-selected.

Move Configuration files
8 Put the three IAR files iar-co.lnt, iar-co-

[-V*].lnt and iar-ew.lnt into the PC-lint

configuration file directory, C:\lint\lnt.

Set up tools dialogue
9 We now have all the files to start the set-up in the Tools

dialogue in EWB and adjust the iar-co***[-v*].

lnt file. Doing it this way will mean that the error

messages which appear in the EWB message window

will give feed back on the settings.

10 In EWB, open the Tools menu and select the

Configure Tools option. When the Configure

Tools dialogue opens click the New button. Nothing

much will appear to change other than New Tool

will appear in the top box labelled Menu Content:

and the box below Menu Text:.

11 In the box Menu Text: enter what you want to

appear on the tools menu as the name for PC-lint -

something like Lint File. You should probably

also enter the compiler type, as you may have more

than one compiler. e.g. ARM, 8051 MSP430 etc. In this

example it is Lint File (ARM). You can also have

project-specific configurations.

12 In the box Command: you need the first part of the

command line that calls PC-lint. The easiest way to

do this is to browse to the location of PC-lint, C:\lint

in this case. Note that no matter what the version of

Windows you are using, NT, XP, Vista or 7, you need

lint-NT.exe.

13 The final window is Arguments: which is in three

parts: the first is the switch -u, the second is the path

to iar-ew***.lnt (in this case iar-ewarm.lnt),

which should be C:\lint\lnt\iar-ewarm.lnt

and the third part is the IAR internal Macro $FILE _

PATH$ which is the highlighted file in the editor.

14 The box Initial Directory should be left blank.

The box Redirect to Output Window should be

checked. The box Prompt for Command Line

PC-lint-EWB

7 library.phaedsys.com

should be left unchecked and the Tool Available

menu set to Always.

15 Confirm all the entries, and then click OK to close the

dialogue. Then click on the Tools menu to confirm

that Lint File (ARM), or whatever you have called it,

is the last entry in the menu.

That completes the tools menu installation.

Configure to include directories and
project specific items
16 We now need to adjust the file iar-co-***[-V*].lnt

to get the correct include paths for the compiler and

the project. Open the iar-co-arm-V6.lnt file in a

text editor.

 NOTE:- On a project that already has all its source

files and has been compiled, the compiler generates

the file main.pbi.cout which is placed in the

project debug/obj directory. This file contains all

the library and project paths used. The paths can be

cut and pasted in to the iar-co-***[-V*].lnt file

and will only require a little editing, mainly for –i

and for quotes.

17 The first section to check is the IAR compiler

directories. Please take care of the quotes around

the file path as you may need to adjust the part

“Embedded Workbench 6.4”. The “\arm\inc\c”

should not need to be changed.

 //MODIFY to point to your IAR Embedded

Workbench installation –

 -i”C:\Program Files (x86)\IAR Systems\

Embedded Workbench 6.4\arm\inc\c”

 For every directory that should be in the search path,

you will need a line like this. The file as supplied

should have all the directories required for the IAR

installation.

18 The same action will be required for the library

directories using the +Libdir directive, for example:

 +libdir(“C:\Program Files (x86)\IAR

Systems\Embedded Workbench 6.4\arm\

inc\c”)

 is for the IAR system libraries. At this point you

could also add any other third party libraries that are

normally used and that are not project specific. This

will include at least the directories for the .h files that

will be required when passing any .c file in the project.

19 The next section is for the project directories also

using the –i directive. The directories should be in

“quotes “ and there should be one line for each place

that has .c or .h files related to the project. This will

include any .h files for any libraries not included

above.

//MODIFY and ADD your project include

paths here

-i”C:\WORK\iar-arm-st\ST\STM32F10x\

IAR-STM32-SK\GettingStarted”

20 The following sections of the file should NOT need

editing. They are specific to the IAR compiler

EWARM Size of Scalars

EWARM extended keywords

//MODIFY for problems with internal

compiler library files: ichooser,

iutility and xmemory...etc..

-elib(19) // Usually about stray

semicolons

-elib(1076) / Anonymous union

assumed to be ‘static’”

-elibsym(1512) // Base class

destructor is non-virtual

-elib(46) // For bitfields

with non-int fields

21 If you are using MISRA-C (or the Scott Meyers’ or Dan

Saks’ guidelines) you need to place the appropriate

file e.g.

au-misra1.lnt for MISRA-C:1998

au-misra2.lnt for MISRA-C:2004

au-misra3.lnt for MISRA-C:2012

au-misra-cpp.lnt for MISRA-C++:

2008

 into the C:/lint/lnt directory. Then add to iar-

co-***[-V*].lnt, the line

C:\lint\lnt\au-misra1.lnt

 For additional advice on MISRA-C, Dan Saks’

and Scott Meyers’ rules, please see the section on

MISRA-C and other Coding Guidelines (p. 10 – below.)

22 You need to set the global warning level, which

determines the severity of errors that generate

warning messages. See the section “Using PC-lint”

for advice on this setting and on modifying it. To set

the default level (w3) the line

-w3

 should be placed after the modifiers mentioned in

para 20 and any of the additional files mentioned in

PC-lint-EWB

8library.phaedsys.com

para 21, but before the lines for the extended defines

described in para 23, below.

23 The final working line is to include the pre-defined

headers we generated earlier.

 EWARM extended defines

-header(C:\lint\lnt\iar-ewarm-

predefined_macros_for_PC-lint.h)

 Save the iar-co-***[-V*].lnt file.

Test the configuration
24 Load a project into EWARM and open a C file to

the editor. Click anywhere in the editor window to

ensure focus. The “tab” at the top of the edit window

should be highlighted. Then go to the tools menu and

select Lint File (ARM) or whatever you have

called the entry.

25 Running the command should give you an output in

the compiler output window, similar to the one below.

 Clicking on the hyperlink (the light blue underlined

part, giving file name, line and position of error) will

take you to that error in the edit window.

26 The most common errors at this point are messages

saying that PC-lint cannot open a file, either one of

its own or a header file. This indicates that either the

file is missing or you have not correctly set up the –i

search paths in the compiler specific file iar-co-

***[-V*].lnt.

27 If the file name etc. is not a hyperlink but plain text

you have probably lost the Control-A characters in

iar-ew***.lnt. The easiest way of fixing this is

to copy the original iar-ew***.lnt from the zip

file to c:\lint\lnt and try again. If that does not

work see the IAR app note Browse Your Application

(Sporrong 2011).

PC-lint set-up for Multiple File Analysis
For multiple file analysis all that is required after

setting up the single file analysis is a second entry in

the tools menu. The $FILE _ PATH$ is replaced with

$PROJ _ DIR$*.c giving the argument line

-u C:\lint\lnt\iar-ewarm.lnt $PROJ_

DIR$*.c

The project variable $PROJ _ DIR$ gives the main

project directory to which you need to add *.C so that

all the C files are picked up.

If there are multiple directories in the project you

wish to check simultaneously, one option is to place all

the directories in a file such as project-dir.lnt and

call that on the argument line as

–u C:\lint\iar-ewarm.lnt c:\lint\lnt\

project-dir.lnt

Test in the same manner as for the single file set

up. Normally the problems are caused by incorrect or

missing paths to files.

Using PC-lint:
Don’t shoot the messenger

PC-lint is very flexible with, as you have discovered

an almost infinite combination of switches and options.

While, as you have seen, most are pre-configured you

can, over time, tune PC-lint to your company coding

standard and specific project requirements. Here we

have some tips picked up over many years of static

analysis using PC-lint. It is worth reading this section,

along with the PC-lint manual, and then spending some

time configuring PC-lint to set up a policy for static

analysis. It will pay dividends in the end and indeed

even improve the C language.

PC-lint-EWB

9 library.phaedsys.com

General
The first time you use PC-lint, particularly on legacy

code you will get large numbers of warnings. Don’t be

disheartened and most important don’t let this stop

you using PC-lint. Don’t shoot the messenger! PC-lint

is finding real problems and looking the other way will

not solve the problem. It will cause bigger problems in

test and debug, if you are lucky. If you are unlucky, these

problems will not be found in the test phase, and will

go out into the field where they can be infinitely more

expensive to fix. Products failing in use can also cause

damage to a company and its reputation. For a history of

this see In Search of Stupidity (Chapman 2003).

Firstly, as with a compiler, an error occurring early

in a file can cause hundreds of other warnings though

the file. For example a missing include for stdio.h will

produce multiple errors every time printf is called. Fix

the first error and many more related to it will also

disappear. Adjusting the PC-lint switches, carefully, can

do the same. So, after what can be a frightening initial

pass, the number of errors and warnings in later passes

should diminish rapidly.

Warning levels
There are two sets of warning levels, one in the

compiler and one in PC-lint. The compiler is a translator

that will compile syntactically legal code. The compiler

warning level should always be set to its highest warning

level and there should be no compiler errors or warnings

in the code. The compiler is producing the binary that

will actually run on the target. If the compiler issues a

warning it means it has a problem, for whatever reason,

in producing the binary: the code that generated these

warnings should be corrected.

It must be stressed that having a clean compile, on

the highest warning setting, does not mean there are no

problems in the code. This is NOT a fault of the compiler

but the design of the C language, which is very happy for

you to shoot yourself in the foot, both feet come to that!

Unlike the compiler, PC-lint is not a translator but

an analyser; it looks at semantics as well as syntax

and it analyses the source in a very different way to

the compiler translating it. PC-lint warning levels can

be adjusted, the default is –w3, set in file iar-co-

***[-V*].lnt. However, on legacy code and for the

first pass on a new project, you should start at –w0. The

–w0 level tests the PC-lint environment, and provides

warnings only of fatal errors. These warnings are about

things such as not finding files (such as library files and

include files). If you find code errors at this point the

code will probably not compile.

On new code, after the first pass to check the set up,

you should move the error warning level from –w0 to

–w3, but for legacy code you should move to –w1. This

level is where PC-lint generates error messages, some of

which will be similar to compiler error messages. These

errors should all be fixed by correcting the code. There

may be a very few errors that require amending the PC-

lint configuration files - things like compiler specific

keywords and extensions - but IAR should have done

this already with the four configuration files. So think

very carefully before amending the PC-lint files. It

should be noted that in practice there are no fully ISO C

compliant cross compilers for the embedded world - see

the comments on options.lnt later in this section.

When all the –w1 errors have been reconciled

move on to level –w2. Again, PC-lint signals errors and

warnings, but these will be much stronger than anything

the compiler is likely to pick up. These messages will

include semantic problems of, as Dennis Ritchie put it,

“legal but dubious constructs” (Ritchie 1993). They will

also be downright dangerous constructs.

From error warning level –w2 move to –w3, which is

the PC-lint default setting: this level will normally find

many things in the source code. Most warnings will

involve correcting the code but in some cases you may

determine that the code is correct, despite the warnings.

In these, few, cases you should suppress the PC-lint

message.

Managing messages: options
As mentioned, you may need to suppress or modify

some PC-lint messages due to project requirements and

deviations on things like MISRA rules or hardware

requirements.

There are various ways of doing this. The obvious

method is using configuration files. DO NOT EDIT the

IAR compiler configuration files, but instead create a

new file. The reason is that should/when IAR updates

the file you can swap it without having to re-edit it.

Traditionally PC-lint user configuration options are

PC-lint-EWB

10library.phaedsys.com

in a file called options.lnt, and there is no reason

not to use this convention. This should be written in a

text editor, using the same syntax as the IAR compiler

configuration files, and placed in c:\lint\lin with the

other PC-lint configuration files and called from the iar-

co-***[-V*].lnt file just above the –w3 instruction.

PC-lint switches are read and acted upon in order of

processing. So using an options file as the last file called,

before the pre-defined macros file and the -w option

in iar-co-***[-V*].lnt, will mean these switches override

previous switches. Also, should IAR update their files,

replacing them will not require editing any files.

There is another method. The source code itself can be

instrumented by PC-lint comments, which do not affect

the compilation. This modifies messages locally, for just

a few lines in a file or a function, rather than globally.

There should also be additional comments to explain

why the particular messages are being suppressed which

should contain a reference to the permitted deviations in

the coding standard in use or the deviation in the project

specific documentation.

If we want to turn off message 521 and then reinstate

it, the comments would be:

 /*lint -e521 */

Statements …

/*lint +e521 */

Note: lint is lowercase and there is no space between

the comment marker and lint.

Multiple rules can be suppressed or reset on a single

line and // style comments can also be used.

MISRA-C and Other Coding Guidelines
MISRA-C can be a difficult subject. Bear in mind,

MISRA-C is Engineering Guidance not a Bloody

Religion. It is practically impossible to have 100 %

MISRA-C adherence with no deviations. More to the

point it is undesirable in the same way it is usually

undesirable to have 100 % ISO C compliant C code

with no extensions or restrictions on cross compilers

for embedded systems. Since you will have deviations

from the rules, you need to have a MISRA-C compliance

matrix. This will document which MISRA-C rules you

are checking, where you are checking them and which

rules you have determined will have deviations. (An

example of a MISRA compliance matrix can be found at

http://library.phaedsys.com)

The MISRA-C lnt file should be included in iar-

co-***[-V*].lnt after the IAR compiler specific

switches and before the pre-defined macros file the –w

and options.lnt file. There are MISRA-C lnt files for

each version of MISRA-C, but you should only include

one.

Unless you are deviating the majority of MISRA

rules, I would suggest that any global modifications

are put in the options.lnt file. Local modifications can

be placed in the source code in the PC-lint comments,

with a comment to document the specific deviation and

reference to the project deviation document.

The same applies to other guides such as Scott

Meyers and Dan Saks. Since these guides were written

things such as the C or C++ standards, the compilers, the

target hardware etc have moved on and changed and

asynchronously to other things also changing. So first

look at the date in the copy of the guide to give you a

context. Then use it as a guide not a fixed rule. However

this does require that you actually understand what and

why the rule is trying to do.

Strong typing in C
One of the big problems with C is that it is not

strongly typed. Whilst PC-lint will complain if you put

a larger type e.g. an int or a long into a char, due to

loss of data and mixing signed and unsigned types, that

is only part of the problem. When you have two types

with the same underlying type, neither the compiler or

PC-lint will complain. This can be remedied, in PC-lint at

least with the instruction

-strong(flags !typename)

This will ensure specified typedeffs have strong

typing in PC-lint (but not the compiler). There is a whole

chapter on this in the PC-lint manual, it is well worth

reading. This is a lot easier to implement on new projects

than on legacy projects!

Indentation
One seemingly innocuous message, that can be easily

overlooked, is a warning on unexpected indentation.

This message flags two possible problems, one of which

is obvious, the other less so.

PC-lint-EWB

11 library.phaedsys.com

The obvious problem is in this case:

interlock = ON;

…

if(TRUE == stop)

 flag = ON;

 interlock = OFF;

…

if(OFF == interlock)

 open_doors();

else

 apply_brakes();

PC-lint will give a warning when { } is missing in

single line if statements (also for do, while, for and

similar constructs) and a second line is added after

flag = ON;. In this example, the line interlock =

OFF; should have been part of the if block. The author

has seen this problem many times, and there are many

reported cases, including this example from a rapid

transit system.

The other, less obvious, occasion is where this error

is apparently a false positive. The code below appears to

be correct.

if(TRUE == stop)

{

 flag = ON;

 interlock = OFF;

 flag2 = set;

}

if(OFF == interlock)

{

 open_doors();

}else{

 apply_brakes();

}

Yet it generates the same “indenting” error after

flag = ON; This usually caused by a non-visible or

printable character or, on occasions, a line that extends

off the side of the screen, sometimes by 100’s of columns

of blank space. This is common where code has been

cut and pasted from other sources and the code did not

have a CR/LF. Linefeeds, carriage returns and end of

file markers differ between many systems and, as they

are non-visible characters, you won’t see them on screen.

The solution is to manually re-create the line, after

deleting the line from, and including, the last visible

character on the line above to the first character of the

line below, i.e.:

ON;

 interlock = OFF;

 fl

With code snippets being cut and pasted between

DOS/Windows/Linux/Unix/Web and other sources, it

is best to listen to PC-lint on this - even when you can’t

see the problem. You have no idea what the compiler

may do with the tokens you can’t see.

The last word

DO NOT SHOOT THE MESSENGER. The

messages from PC-lint indicate problems that will surface

at some point. The sooner these warnings are fixed, the

less they cost in time and resources. Remember that

time also costs money. The costs rise if test and debug

takes so long you miss release dates. The ultimate cost

of unreliable software in the market can be the future

of a company and your job. Read In Search of Stupidity

(Chapman 2003)

After the initial PC-lint set-up and use: read the PC-

lint manual for ways of improving the static analysis for

your project. And finally: Run PC-lint often, far more

often than you run the compiler.

References
Chapman, M. R. (2003). In Search of Stupidity: Over

20 Years of High-Tech Marketing Disasters, Apress.

Johnson, S. C. (1979) Lint, a Program Checker. Unix

Programmer’s Manual, Seventh Edition 2B,

Ritchie, D. M. (1993). The Development of the C

Language. ACM: 16.

Sporrong, T. (2011) Browse your application. 6

The Art in Embedded Systems
comes through Engineering discipline.

PC-lint-EWB

Integrating PC-lint into IAR
Embedded Workbench

First edition August 2005

Second Edition January 2013

© Copyright Chris A Hills 2013

The right of Chris A Hills to be identified as

the author of this work has been asserted by him

in accordance with the Copyright, Designs and

Patents Act 1988

Phaedrus Systems Library
The Phaedrus SystemsLibrary is a collection of useful

technical documents on development. This includes

project management, integrating tools like PC-lint to

IDE’s, the use of debuggers, coding tricks and tips. The

Library also includes the QuEST series.

Copies of this paper (and subsequent versions) with

the associated files, will be available with other members

of the Library, at:

http://library phaedsys com

