
FOCUS: HIGH AVAILABILITY26

EmbeddedSystems Europe SEPTEMBER 2003www.embedded.com/europe

Database management sys-
tems, long a staple of desk-
top and enterprise appli-

cations, are playing increasingly
prominent roles in real time
embedded systems, in fields as
diverse as industrial process
control, telecom and network
infrastructure, and medical de-
vices. In this new terrain, pre-
dictability and performance are
two critical requirements.

In contrast to office applica-
tions, data processed too late in
a real time setting often be-
comes incorrect or even dan-
gerous, so it is vital for the ac-
tual state of the external world
and the state represented in the
database to be close enough to
remain within the limits of the
application. In-memory data-
bases have emerged as a popu-
lar solution, offering superior
predictability and performance
through a streamlined design
that eliminates disk I/O,
caching and related overhead.

By its nature, a database that
operates entirely in RAM is vul-
nerable, in the sense that if the
RAM content is destroyed, the
database is destroyed with it. In
real-time embedded systems,
such failure can spell disaster or
loss of money. With the increas-
ing number of embedded de-
vices serving real-life processes,
there is strong demand for
highly available, database-
equipped systems that provide
service with absolutely no down
time. Consider a few real-life ex-
amples.

An industrial controller at a
paper mill incorporates an in-
memory database that holds
thousands of measurements
made throughout the factory by
vibration, temperature, pres-
sure and other types of sensors
attached to machinery. Based
on these data the controller
makes control decisions deliv-
ered to the paper-making
equipment.

If the controller goes out or
malfunctions, at best the paper
machine is stopped, at worst it
begins to make bad paper or
even breaks. With an average

paper machine making between
$500K to $1million worth of
newsprint per day, any inter-
ruption is disastrous.

Internet IP routers use in-
memory databases to maintain
their internal storage subsys-
tems – the routing tables. Car-
rier-class IP routers often de-
mand high availability for both
internal configuration and in-
ternal state data.

Router architecture is engi-
neered to meet ‘five-nines’ avail-
ability requirements (99.999%
up-time, which equals 5 minutes
down time per year) and often
provides hardware and software
fault-tolerance to support this
requirement. The storage sub-
system used for building the
routing table management is a
critical component. IP router
failure means interruption of
service for millions of cus-
tomers.

Medical device failure could
have even more calamitous ef-
fects on those who depend on
such systems. Fire or intruder-
alarms are yet another example
of embedded systems that must
be on-line 24/7.

To achieve high availability,
an in-memory data store often
must offer a means of maintain-
ing copies of data, so the loss of
RAM and its content for the
database or one of the replicas
does not mean loss of data ac-
cess and the data itself. In this
solution – called database repli-
cation – fail-over procedures
allow the system to continue
using a database. This article ex-
amines approaches to database
replication in embedded sys-
tems, with a focus on introduc-

ing replication without down-
grading performance.

Within applications, data
management is carried out via
basic units of processing called
transactions. This is true whether
the database is incorporated in
real-time embedded software,
or a more traditional office sys-
tem, because both kinds of ap-
plication must safeguard data
consistency.

A transaction is a collection
of operations such as reads,
writes, inserts and deletes that
together perform a single logi-
cal function in the database.
Transactions are characterized
by ACID properties:
● Atomicity: either all the ef-
fects of a transaction appear or
none of them do. A transaction
is performed in its entirety or
not at all.
● Consistency: a transaction
takes a database from one con-
sistent system state to another.
● Isolation: effects of a transac-
tion are hidden from other con-
currently executing transac-
tions – a transaction is isolated
from other ongoing transac-
tions. Only updates of commit-
ted transactions are visible.
● Durability: once a transaction
is completed successfully, all of
the changes it made to the sys-
tem are permanent, and must
survive all subsequent malfunc-
tions.

Database replication is the
traditional mechanism for in-
creasing the availability of data-
bases. A replicated database is
one in which data items are
replicated at different failure-in-
dependent nodes or sites. The
node at which a transaction was

initiated is referred to as a mas-
ter site. The database system
manages the data distributed
over multiple nodes, making
sure that queries and data up-
dates are executed transpar-
ently for the application, even
in the case of a node failure.

Replica control mechanisms
facilitate data propagation be-
tween copies. These mecha-
nisms can be categorized ac-
cording to when updates –
changes introduced by transac-
tions – are propagated to all
database copies.

Update propagation can be
done within or outside transac-
tion boundaries. In the first
case, replication is termed eager
or active. If it occurs outside the
boundaries of a transaction,
replication is lazy or passive.

Eager replication allows the
detection of conflicts within a
transaction, before the transac-
tion commits. This approach
provides data consistency in a
straightforward way, and the
quickest application recovery
time when a fault occurs – see
figure 1. No transactions are
ever lost in the active replica-
tion scheme, there is no over-
head associated with node syn-
chronization during fail-over,
and the replica database is avail-
able immediately. At the same
time, active replication has
higher processing costs and
communications overheads that
can increase the response times
during normal use.

In contrast to eager replica-
tion, lazy replication schemes
propagate updates to replica
nodes asynchronously and after
the transaction commits on the
master node – see figure 2.
These updates are applied to
replica nodes as separate trans-
actions. Compared to eager
propagation, lazy update propa-
gation can improve transaction
responsiveness by saving on the
message round-trip within the
transaction. However, since up-
dates are applied to replica
nodes asynchronously, replica
transactions run the risk of op-
erating with stale data or falsely

Embedded database design for HA
Andrei Gorine, principal architect for McObject, describes the eXtremeDB real time database system.

Fig1: Eager (synchronous) replication

FOCUS: HIGH AVAILABILITY 27

EmbeddedSystems Europe SEPTEMBER 2003

reporting certain data as un-
available if a certain sequence
of updates and lookups occurs.
For example, a replica applica-
tion can read a data element
that has been removed by the
master node transaction, if the
read occurs before this transac-
tion is committed at the replica
node.

Another major drawback of
the lazy replication is a potential
risk of losing committed trans-
actions in case of a network or a
node failure. Additional algo-
rithms are necessary to regulate
replica updates and address
these issues. These mechanisms
fall into two categories: lazy
group and lazy master schemes.

Lazy group algorithms allow
for two nodes to update the
same data and race each other
to install the updates on other
nodes. All the conflicting trans-
actions have already been com-
mitted, and cannot be rolled
back. Therefore, the replication
mechanism must be able to de-
tect conflicts and resolve them
by executing compensating
transactions or update reconcil-
iation.

In lazy-master algorithms,
each data element is assigned a
master node – the ‘owner’. Only
the master can update the pri-
mary copies of data elements.
All other copies of the data ele-
ment are read-only. The master
node stores the correct value of
the data element and updates
are first done at the master
node and then propagated to
replicas. Thus the transactions
that would have been recon-
ciled in the group replication
are forced to wait and can even
deadlock.

Due to the lazy updates, the
algorithm may cause the update
transaction to read stale data,
which results in an inconsistent
database. To ensure consistency,
lazy-master algorithm must em-
ploy additional high-overhead
concurrency control mecha-
nisms.

Both types of mechanism are
often complicated and require
additional system resources,
which could easily become pro-
hibitive in the harsh environ-
ment of an embedded system.
Furthermore, in the fail-over sit-
uations, lazy replication algo-
rithms must recover lost propa-
gations after node failures. This

processing may add substantial
delays and decrease overall sys-
tem availability.

A better choice for an appli-
cation requiring predictable re-
sponse times may be data man-
agement using time-cognizant
eager replication protocols. Em-
bedded systems frequently im-
pose strict processing deadlines,
and such an approach ensures
on-time delivery of the transac-
tion data from master to replica
sites. As with any active replica-
tion scheme, fail-over proce-
dures are extremely short.

The simplified execution of a

transaction using time-cog-
nizant eager replication is sum-
marized as follows. A transac-
tion ‘T’ is submitted to a master
node and the transaction man-
ager assigns a timestamp to it.
The transaction performs all
reads and writes locally and
combines the update into a sin-
gle message called the ‘write
set’. When a transaction is ready
to commit, the master node
sends a message to all nodes
that a write set is available, and
then the write set is sent to all
available nodes. Upon receiving
the ‘availability’ message, each

node opens a transaction and
assigns a timestamp to it. If the
entire write set is not received
within a specified timeout, the
replica node considers the com-
munication failed, and attempts
sending the notification back to
the master node.

When the entire write set is
received in time, the transaction
manager on each node per-
forms updates and tests the set
for conflicts. It then sends the
result of the commit back to the
master node. The transaction T
only waits for the commit ac-
knowledgments for a specified
time period. Any result received
after the timeout is not consid-
ered, and the node responsible
for this late response is ex-
cluded from further processing.
With time-cognizant eager repli-
cation, transaction predictabil-
ity is enforced.

Maintaining a replicated data-
base is often a key to achieving
high-availability in data-centric
embedded applications. How-
ever, database replication comes
at a price, providing fault-toler-

Fig2: Lazy replication

InfoCard: Enter No: 0017Online: www.eelink.com

FOCUS: HIGH AVAILABILITY28

EmbeddedSystems Europe SEPTEMBER 2003www.embedded.com/europe

ance at the cost of storage du-
plication and increased system
resource usage. In addition,
adding replicas involves messag-
ing that boosts communications
cost and the likelihood of net-
work congestion. Duplicating
transactions at each node also
increases CPU utilization. In sit-
uations where operating re-
sources are extremely scarce,
the replication strategies out-
lined above, using multiple
replicas, may be impractical.

Developers can scale down
resource demands via a simpli-
fied ‘hot backup’ form of repli-
cation. In this approach, the
backup copy is located on a dif-
ferent hardware node, con-
nected to the primary node via
a common bus, Ethernet or
other mechanism. Transaction
processing takes place at the
primary node and the log of
changes made to the primary
database is propagated to the
hot backup, which reconstructs
the state of the primary data
store. In the event of the pri-
mary node failure, the backup
node takes over the transaction
processing transparently to the
application. Algorithms for
maintaining the backup copies
can be classified by the strategy
used to propagate changes from
primary to the backup.

In the 1-safe design, the trans-
actions commit at the primary
node and the updates are prop-
agated to the backup at a later
time. The system throughput is
therefore essentially the same as
in the single node system, with-
out a backup. However, the
transactions may not be
durable: if a transaction did not
propagate to a backup before
primary failure, it will be lost
when the backup takes over the
processing. This design corre-
sponds to a lazy replication
schema in its reliance on propa-
gating changes to the backup
node only after they have been
committed on the primary
node

In the 2-safe design, the
backup system is involved in the
commit, and the primary node
will not commit the transaction
until the backup notifies the pri-
mary of the commit via a 2-
phase commit protocol. This
approach guarantees the dura-
bility of transactions and avoids
a potential loss of committed

data due to primary failure.
This design corresponds to the
active replication schema.

Embedded databases using
the primary-backup replication
scheme are often available com-
mercially. The approach to
choose depends heavily on the
application’s requirements, op-
erating environment and com-
munication channels. Like
other lazy designs, 1-safe can
provide better performance but
risks a loss of data during fail-
over procedures. While ensur-
ing transaction durability, the 2-
safe approach may impose per-
formance degradation due to
communication delays. In the
real-time environment of em-
bedded systems, it is often help-
ful to add time awareness to the
2-safe approach, utilizing a
time-cognizant eager replica-
tion method.

In database replication as
elsewhere in embedded sys-
tems, communication is a major
performance bottleneck. The
real-time nature of embedded
networks demands highly effi-
cient, deterministic, robust and
configurable communications.
To answer to these demands,
embedded systems use a great
variety of media access proto-
cols and transports. While some
high-end embedded systems
communicate over a VME back-
plane or similar architecture,
there are many that use multi-
ple physical CPUs and require a
LAN-based comms bus.

A variety of media access pro-

tocols serve as foundations for
LANs: traditional connection-
oriented protocols; polling
(highly popular in the embed-
ded world for its simplicity and
determinism); Token Ring net-
works and Token Bus protocol
(which are well suited for man-
ufacturing plants and are
adopted by the Manufacturing
Automation Protocol, or MAP);
a Binary Countdown protocol,
used as a foundation for the
Control Area Network (CAN) ,
a high integrity serial data com-
munications bus (originally in-
troduced for vehicle communi-
cations); and the TDMA proto-
col, which is often used in
satellite communication, but is
also suitable for LANs. Many
combinations of the above, as
well as proprietary solutions,
are also available.

As a practical matter, a data-
base replication mechanism
should be able to adopt the
communication protocol used
for any given embedded appli-
cation. In addition to having
certain properties required for
the replication itself, such as
time-awareness, and compatibil-
ity with diverse media/transport
combinations, the database
should also provide a way to
‘plug-in’ various network imple-
mentations. Embedded data-
bases are often implemented as
libraries of functions with inter-
faces that can be used to inte-
grate data replication process-
ing into applications. These li-
braries often introduce the

communication channel ab-
stractions that prototype chan-
nel_send () and channel_receive ()
functions.

These or similar abstractions
allow configuration of the com-
munication channel used by the
database engine to fit the em-
bedded application’s existing
underling transport protocol.
The communication channel
abstraction is usually a thin layer
within a database engine, but is
one of the key components
since the efficiency can only be
achieved when the communica-
tion overhead is small.

Many modern embedded
real-time systems must remain
operational even in the face of
failed hardware or software
components. For an embedded
database, this means surviving
the failure of the hardware de-
vice on which the database re-
sides or the software environ-
ment in which the database op-
erates. Replication of persistent
data is crucial to achieving high-
availability of data. For embed-
ded systems replication, funda-
mental requirements include
low processing overhead, pre-
dictability, efficient fail-over
procedures and overall transac-
tion efficiency. Data consistency
and performance are often
competing goals in the manage-
ment of replicated data. The
correct replication schemes for
high availability may suffer per-
formance penalties. Developers
need to choose whether to use
synchronous or asynchronous
approaches to data replication
based not only on an applica-
tion’s performance goals dur-
ing normal operation, but its
requirements for data durabil-
ity, data availability during de-
vice failures, and CPU and
bandwidth consumption.

References:
1. Bernstein, P.A., V. Hadzilacos, N.
Goodman, Concurrency Control and
Recovery in Database Systems, Addison
Wesley, Reading MA., 1987.
2. Gray, J., Reuter, A., Transaction
Processing: Concepts and Techniques,
Morgan Kaufmann, San Francisco, CA.
1993.
3. Jim Gray, Pat Helland, Patrick O’Neil,
Dennis Shasha. The Dangers of Replication
and a Solution. SIGMOD, June 1996
4. “eXtremeDB High Availability
Addendum”, McObject, Issaquah, WA 2003
5. Upender, B., and P. Koopman,
"Communication Protocols For Embedded
Systems," Embedded Systems
Programming, November 1994

Fig 3: Communication channel abstraction layer

