

1 WP142B/12/14 © 2014 Programming Research Ltd

WHITEPAPER

Return on Investment
A business case for Static Analysis

December 2014

A Return on Investment (RoI) calculation is often complex due to the number of
parameters involved and the diverse nature of these parameters. Some of these
drivers are relatively easy to identify and others are harder to grasp and more difficult
to quantify. In this whitepaper we identify and discuss 10 key drivers that impact the
optimization of the RoI in relation to static analysis. We also generate scenarios based
on the analysis code from a real open source project to help to demonstrate and
quantify the potential impact on the RoI.

chills
Typewritten Text
Supplied by the PRQA UK distributor

chills
Typewritten Text

chills
Typewritten Text

chills
Typewritten Text

chills
Typewritten Text
www.phaedsys.com

http://http://www.phaedsys.com/principals/programmingresearch/
chills
Typewritten Text
info@phaedsys.com

mailto:info@phaedsys.com

2 WP142B/12/14 © 2014 Programming Research Ltd

Introduction

Detailed RoI calculations are complex, and need to take account of many factors such as the timing of the
cost/revenue streams, the timescale under consideration, the accuracy of forecasts, perceived risks, cost of
capital, and so on. However, simplistically the RoI boils down to two primary constituents: the costs and
the revenues.

In this whitepaper our primary focus is on the Software Development Life-Cycle (SDLC), and we look at how
common SDLC parameters (and in particular those related to static analysis) impact the RoI. It is worth
noting in advance that this SDLC dialogue relates predominantly to the cost side of the RoI equation.
However, ultimately these drivers also clearly have the potential to enable subsequent incremental revenue
streams.

First, we identify 10 key drivers and discuss how these impact the RoI. Then, we examine the static analysis
output from an open source project and use this data to provide help to substantiate the impact of these
drivers.

A) KEY DRIVERS

1 - Defects lifecycle

One of the most obvious and fundamental RoI drivers is the characterization of the injection and
subsequent removal of defects.

Much research has been conducted on this subject [1] [2] [3]. For example an empirical study conducted
across several projects from various service-based and product-based organizations [2] reveals a typical
distribution:

SDLC Phase % of defects introduced

Requirements 50% to 60%
Design 15% to 30%
Implementation 10% to 20%
Other (e.g. bad fixes) Up to 20%

The defect introduction and removal pattern is usually modeled as a Rayleigh distribution [4] [5]:

It is also a universally accepted principle that the time (and, therefore, the cost) to resolve a defect increases
dramatically when the fix is deferred to later in the SDLC [1] [6] [7]. The table below provides a summary of
some recent research [6] and this data is representative of the escalating costs as identified by the broader
body of research:

0

5

10

15

20

25

30

35

High level-
design review

Low-level
design review

Code
inspection

Unit Test Component
test

System Test

D
e

fe
ct

s/
kL

O
C

Development Phase

http://www.programmingresearch.com/solutions/static-analysis/

3 WP142B/12/14 © 2014 Programming Research Ltd

In deliberately simplistic terms, the most effective
approach is to a) find ways to stop introducing
defects in first place, b) find ways to move up the
resolution of defects to push the apex of the
Rayleigh curve leftwards and downwards.

In many respects, this defect injection and removal
profile is the key driver behind the RoI. However, this

observation is very much made at a high level. It is necessary to drill down into the underlying drivers and the
root causes and to really understand how these impact the RoI.

2 - Testing

When defects do escape (especially to the field), the first reaction is to blame inaccurate, inefficient or
incomplete testing. This behavior is founded on the widespread myth that testing by itself provides sufficient
evidence for high integrity and quality.

Of course, testing is crucial, but what many people fail to appreciate is that testing is not a panacea:

 Testing is predominantly

associated with functionality.

There is a broad consensus in

software community that it is not

adequate for a software system to

meet the expected functional

requirements (FRs – describe the

behaviors required to support the

user’s need) without considering

non-functional or structural

requirements (NFRs – identify the

attributes that address the internal

integrity of the system). A useful

model, which outlines the differences, is provided by ISO/IEC – 9126 [8]. There is some overlap

between functional and structural requirements, for example, where functional requirements identify

specific Reliability and Efficiency goals expected from the user’s external view [9]. The relevance of

this to the RoI relates to the fact that, 1) not only FRs need considered, and, 2) when individual

FRs and NFRs are considered these can be tested/verified at different stages in the SDLC.

Therefore, there is a very real possibility to pull some of these forward from testing to

development.

 100% test coverage is not realistically achievable. There are several

reasons for this. Firstly, it is not feasible or practical to generate test cases

to cover every conceivable eventuality, to execute every specific statement,

branch, condition and edge case [10]. Investing in increasingly granular test

cases becomes a law of diminishing returns. Secondly, it’s almost

impossible to have complete coverage in the case of infeasible paths, dead

code or defensive programming – complexity tends to grow exponentially

and so do the number of test cases required [10]. It is worth noting that in

contrast to this static analysis has the potential to cover 100% of the code. And also that

dataflow analysis, which models the run-time behavior of a program, provides a very effective

mechanism to help to identify different classes of problems (e.g. invariant/redundant operations,

dereferencing of NULL pointers, overflow / wraparound conditions etc.)

SDLC Phase Cost to resolve defect

Requirements 1x
Design 3-6x
Coding 10x

Development 15-40x
Acceptance 30-70x
Operations 40-1000x

4 WP142B/12/14 © 2014 Programming Research Ltd

 Testing is expensive: The rework required to fix late-detected software

defects is one of the largest single components of their development cost

[11] [12]. Defect detection invariably requires numerous iterations of

finding/ fixing issues followed by re-integration (which, in turn, can and

will introduce new defects), and as the detection time slips to later

stages of the lifecycle, costs increase.

 Testing extends delivery times. In the most simplistic scenario, a defect identified in testing needs

to be passed back to development, fixed, reintegrated and retested. This cycle can seriously impact

delivery times. It also introduces risk and uncertainty - we have all experienced projects that are

ready to ship “next week” and then suddenly slip to “next month”. In practice, this scenario is usually

too simplistic, typically additional test-fix-test iterations are required, for example:

o when the initial fix from development does not resolve the issue

o when the regression testing discovers that the initial fix has injected new defects

Studies of safety-critical, embedded systems have shown that the rework required to fix late-detected

software defects is one of the largest single components of their development cost and schedule [11]

[12].

 The structural quality of the code entering testing is important. Thus, for example:

o As code becomes more complex, it becomes more difficult to test. Linear increases in

complexity place an exponential burden on testing. Thus, controlling complexity during the

design/coding phase (for example, via cyclomatic complexity metrics, function structure

diagrams, etc.) can have a major impact on the scope/cost of testing.

o When testers are focusing primarily on functionality, they do not want to be distracted by

underlying structural issues, or have these mask the functional defects.

o Resolving a bug found in well structured code is a completely different proposition to doing

the same in a chaotic, inhomogeneous code base.

 Testing uses critical experienced resources – This activity requires proper training and rich

experience in order to plan and execute effectively; even with automation, verifying functionality is

painstaking work; when it is mired in code structural defects and associated repairs chaos ensues. [9]

So, testing remains extremely
important, but also has significant
limitations. The table here on the left
provides a good summary of the range
of defect removal efficiency levels for a
variety of reviews, inspections, static
analysis and several kinds of test
stages. As shown, most forms of
testing are less than 35% efficient in
finding bugs or defects [13].

Testing clearly does not sit in a
vacuum, and has huge inter-
dependencies with development and

the use of static analysis. The RoI for static analysis cannot be considered in isolation, but also needs to
take account of other stages in the SDLC. In particular optimizing the static analysis RoI should also involve
two distinct challenges related to testing:

5 WP142B/12/14 © 2014 Programming Research Ltd

 pulling the detection of defects forward from testing to coding, (a process sometimes referred to

as development testing), noting also that this paradigm shifts part of the accountability for final

software quality from QA to development

 making testing more effective, by striking the appropriate balance between functional and non-

functional testing, maintaining more stable, cohesive and well-structured code base (spaghetti code –

that is code with a tangled and convoluted structure, often result of legacy code modified during the

years - will require more time to be maintained, it will break more easily and it will more likely produce

unintended effects, including delays due to additional regression testing).

3 – Code reuse

In most commercial software releases the percentage of code that is freshly created, in house, from scratch, is
generally very low - in reality the majority of code is existing code which is being reused.

There are many good legitimate reasons for code reuse, and clearly one of the key incentives is to improve
the RoI. However, we note that there are many different flavors of “existing code” and it is extremely important
to understand that each comes with their own sets of pros and cons. As companies start to rely on code that is
generated outside the perimeter of their core controlled development process, they need to be conscious of
these different characteristics and the broader cost implication. We highlight five key categories of code
below:

a) Legacy
In principle, legacy code falls squarely under the company’s core development process. However, experience
shows that this code will typically have evolved over many years in a way that is inconsistent and no longer
aligned with today’s processes and best practices. The appropriate versions of the key development tools are
no longer supported and often the developers who created the code have moved on (to different projects or
different companies).

The supposition that all legacy code is “proven-in-the-field” and, therefore, automatically suitable to be re-
used, (for example, on different target hardware or within a different system), also needs challenged,
especially with relation to safety related systems.

Clearly static analysis tools and coding standards have a significant role to play in providing development
teams with insights into the structural integrity of legacy code, and also in terms of proving mechanisms to
update this code to comply with today’s coding standards and best practices. The potential to impact the RoI
(and to reduce the risk) is clear.

b) Open Source software (free & commercial)
Open source code and libraries are similar to legacy code in the important respect that the source code is
available to the development team. Again, there are clear commercial incentives to reuse this code, but the
big question this time relates to the code’s uncertain provenance (and ongoing support). Different vertical
markets have even coined their own terminologies as they work to develop frameworks which enable them to
leverage these types of code (e.g. in the medical domain IEC 62304 identifies Software Of Unknown Pedigree
(SOUP) - and A&D recognizes Commercial Off The Shelf (COTS).

The fact that the source code is accessible again creates an immediate opportunity for static analysis
tools and coding standards to contribute positively to the RoI.

c) Auto-generated Code
The verification of the auto-generated code leverages the reliability of the automated code generator and is
also qualified-through-use based on previously deployed codebases. Again there are opportunities to apply
static analysis, the RoI being very dependent on tool’s ability to identify and selectively evaluate handcrafted
code.

http://www.programmingresearch.com/solutions/coding-standards/

6 WP142B/12/14 © 2014 Programming Research Ltd

One interesting approach adopted by some teams with relatively small codebases is to use MDD for design,
visualization and modeling – but not to auto-generate code. They have come to the conclusion that it is more
cost effective to hand generate and verify these relatively small sections of code [14].

d) Outsourcing
The trend for software outsourcing continues to grow. There are good reasons for this including [15]:

 addressing staff shortages

 reducing labor costs

 specialized skills availability

 round-the-clock workflow.

Outsourcing comes in many guises. Sometimes the scope is limited to the software and sometimes the
software is bundled with the hardware. Take for example the automotive industry where the OEMs’ supply
chain is deep and extensive. In this case the OEMs typically demand that the suppliers develop code which is
MISRA compliant and also ask them to provide evidence of this compliance (often even requesting that this is
done via QA∙C). This provides the OEMs with a guarantee of the structural integrity of the software.

One crucial milestone is the point at which the outsourcer completes their development and this is signed-off
and handed back to the vendor, or indeed whoever is responsible for ongoing maintenance. If the
maintenance contract is outsourced (e.g. the client pays – say - 20% per year for support, bug fixes, and
minor enhancements), it will be extremely profitable for the provider if the code is high quality and easy
to understand and maintain. Equally, if the provider inherits code, which is structurally poor (spaghetti), the
cost of maintenance and defects resolution can be extremely high (as the risk is).

4 – Lifecycle models

As already noted, identifying and helping to fix defects as soon as possible after they arise and as early as
possible in the SDLC process is fundamental to static analysis and has a major impact on the RoI. Early and
often are also fundamental tenets in incremental/iterative development approaches, such as Agile and
Continuous Integration/Continuous Delivery.

Agile advocates short (typically 4-8 week) sprints, with the additional objective that the code is fit to release at
the end of each sprint. Consequently, the code needs to be kept in a consistently good state and defects,
therefore, have to be removed soon after their introduction. Procrastination is not an option.

Similarly with Continuous Delivery, the objective here is also to keep the code in a consistently good state and
automated checks as are typically performed on every check-in. Therefore, it is not surprising that static
analysis integrates extremely well into these processes – the fact that these implementations dictate that
the analysis is performed early and often, tends to improve the static analysis RoI.

In comparison, traditional sequential models, like Waterfall or V-model, have a greater potential to delay the
discovery of defects, and this is especially true if it is assumed that many of the defects injected in the
coding phase will remain dormant until discovered later in the testing phase. And in these sequential
processes considerable time can pass between coding and testing. Under this regime, as previously
discussed, maximizing the static analysis RoI means pulling the defect resolution forward from testing to
development.

5 - Automation

Automation is clearly one of the key efficiency drivers and is a relevant consideration for practically every
process in the SDLC and across the complete development tool-chain.

The automation of static analysis is especially pertinent from two perspectives. The first, relates to the
integration into the different SDLC processes (as discussed above), and the second, relates to the
effectiveness of the tool in analyzing the source code (and this is discussed in more detail in the next section).

7 WP142B/12/14 © 2014 Programming Research Ltd

However, automation - in its own right - delivers many benefits which are particularly pertinent to the RoI, for
example:

 scalability - the ability to easily increase the volume of analysis

 speed - dramatically improving duration of the analysis

 consistent and predictable - an automated tool will deliver the same results every time. Individuals,

with different levels of expertise, will not.

 independent - the output from a tool will be objective, different individuals have different perspectives

 precision & accuracy – often delivering a higher quality of output

 traceability – automated process tend to leave documented (audit) trails that can be used as

evidence of enforcement or verification

 critical expert resources – can be freed from mundane repetitive tasks and reassigned to value-

added activities.

6 – The effectiveness of the static analysis tool
Unfortunately, the great deal of benefit originating from the adoption of automated processes can be
seriously jeopardized by the adoption of ineffective static analysis tools.

False positives
The obvious impact of a high number of false positives in the analysis results is the extra time and cost
required for developers to assess, identify and eliminate these [16] [17].

This may not be a major issue if a limited number of rules are being run on a small sample of code. However,
as the number of rules and code size increases, the implications (extra cost and time) of using a noisy tool
become very apparent. Furthermore, note the very real danger that many false positives will ultimately destroy
the credibility of a tool and result in poor adoption by the development teams.

False negatives
While false positives impact the overall productivity of the operator, false negatives can be way more
dangerous, because they lead to a false sense of confidence [18]. This risk is explicitly highlighted in
many standards including DO-178, IEC 61508 (and family) and MISRA.

Introducing the definition of precision as
the percentage of true positives on the
total detected defects, and accuracy (or
recall) the percentage of correct
classifications (true positives and true
negatives), the best static analysis
tools rate the highest precisions and
the highest accuracies [16]. This topic is
nicely summarized by showing the output
of independent research by TERALabs
[19] [20] into the effectiveness of a range
static analysis tools in enforcing 11 key
MISRA C rules. In the case of the
performance of QA∙C was exemplary -
identifying all rule violations, no false
positives.

One further consideration - somewhat linked to the topic of false negatives - is to get a clear understanding as
to the scope of the tool and what categories of defects are detected. For example, in relation to coding
standards, what is the rule coverage? Modern coding standards like MISRA C:2012 are specifically designed
to make a clear distinction between those areas that can be verified using static analysis tools (rules) and
those which require manual interaction (directives). Beware of any tools that purport to have 100% coverage!

∙

http://www.programmingresearch.com/solutions/static-analysis/
http://www.programmingresearch.com/content/white-papers/prqa-white-paper-tera-labs-static-analysis-tool.pdf

8 WP142B/12/14 © 2014 Programming Research Ltd

7 – Certification requirements

Modern safety-critical projects are typically needed to adhere to modern quality standard. Whether it is in
automotive, avionics, defense, medical, rail, nuclear and so on, there are industry-recognized standards (ISO
26262, DO-178B/C, IEC 62304, EN 50128, IEC 60880) that the software has to comply with. Tools deployed
within these projects need be fit-for-purpose for the user to achieve such compliancy. In some cases – like in
DO-178B and in the most recent DO-178C with its supplement DO330 – there is the formal requirement to
use qualified tools.

Clearly, the RoI is impacted by the availability of certified / qualified tools, and if this burden is placed on the
user (and/or the user opts to do the certification process on their own) this can result in significantly increased
costs and uncertainty for the project.

8 – Coding standard support

One of the main purposes behind coding standards is to define a safer and more deterministic sub-set of the
chosen language, encouraging best practices, eliminating situations where undefined behaviors can arise and
helping to identify coding errors (e.g. initializations, name-hidings, unreachable code, etc).

Whether an widely-recognized standard is adopted (such as MISRA, JSF or HIC++), or alternatively an in-
house standard, (the latter possibly derived from the former with the integration some customized rules, like
dedicated naming conventions), a static analysis tool has to provide full support to coding standards
enforcement; availability and customizability are key values to select among different products.

Most developers, whether novice or experienced, recognize the fact that coding standards have been created
by teams of acknowledged experts who have an extremely deep understanding of their programming
language and know the potential risks and pitfalls. What’s more, most are available for a token price or free.
The bulk of the costs (and potential cost savings) relate to the effective implementation of these best
practices. Consequently, it is much more effective, from a technical perspective as well as from a cost
perspective to leverage these rule-sets rather than trying to “invent” new rules from scratch. Indeed, it is worth
noting the reaction of auditors, they are immediately reassured when they see recognized coding standards
being adopted, and are very keen to scrutinize the justifications for deviations and “alternative” rules that have
been created in-house.

9 - The Development perspective – beyond the cost

As flagged up in the introduction, the examples above tend to focus on efficiency
improvements and cost savings, and relate primarily to development activities
and the SDLC process. However, the benefits to the engineering team are not
limited solely to cost savings. Per the traditional Project Management triangle, there
are also associated improvements in relation to delivery times, quality (and
predictability), for example:

 quicker delivery times and shorter intervals between consecutive

deliveries

 increased confidence in quality of code – internal and external

 safer adoption of open source modules

 stronger acceptance gateways for outsourced activities

 easier support and maintenance operations

 improved delivery predictability.

10 – The Business perspective – the revenue side

From the business perspective, there are clear benefits in improving the efficiency of engineering – and
delivering more for every $ spent. However, the incremental revenue – increased unit sales and/or higher

9 WP142B/12/14 © 2014 Programming Research Ltd

0

1

2

3

4

5

6

7

8

9

10

Development
Unit Testing

Integration
Beta Testing

Post Release

19%

14%

8%

59%

MISRA Advisory Directives MISRA Advisory Rules

MISRA Required Directives MISRA Required Rules

prices – will potentially have an even greater impact on the RoI (and the P&L). And clearly it is the output
from development that enables for this incremental revenue.

The primarily aim of this whitepaper has been to cover the SDLC/ development side. Therefore, we will resist
diving deeper into the business and revenue scenarios. However, the list below will help to identify some
specific opportunities for further cost reductions and improved revenues for business operations as a whole.

Cost related items:

 reduce development cost

 reduce support and maintenance cost

 reduce warranty cost

 reduce cost of product recalls

 reduce legal liabilities /cost

Revenue related items:

 reduce time-to-market

 improve sales volumes

 improve quality

 increase prices

 quicker to respond to market opportunities

 quicker to respond to competition

 improved brand equity / reputation

 improved predictability, lower risk.

B) ROI ANALYSIS – AN EXAMPLE

To test the ideas discussed so far, we selected a small open-source
project and looked to remove all MISRA C:2012 related diagnostics.
The selected project was time-1.7 (the GNU version of the utility that
measures a program’s usage of resources, such as time and CPU).
This release is composed of 6 header and 5 source files and
roughly 2.000 lines of code.

The code was analyzed using PRQA QA∙C v.8.2 with MISRA
C:2012 compliance module. Using this setup, the tool detected a
total of 520 diagnostics.

In the scenarios below it is assumed that we resolve all these
violations.

With respect to the lifecycle, we have simplified this into to 3 phases:

 Development/ Unit Testing

 Integration/ Beta Testing

 Post Release.

We have assumed that the average time to find and fix a defect is 1
hour during the development phase, increasing to 3 hours during the
integration stage and to 10 hours post release. Note, when comparing
the outcomes of the scenarios the ratio (1:3:10) is more significant
than the absolute values. These find and fix times remain constant
throughout all the scenarios below.

Case studies
We implemented 5 different scenarios, primarily focusing on the sensitivity of the RoI as the % of defects
fixed during each phase changes.

Scenario 1 – Reference Case
As a reference case, we based the find and fix distribution roughly on the data from NIST [21], specifically;
30% of defects are fixed during development, 60% in integration and 10% after the release of the product.

10 WP142B/12/14 © 2014 Programming Research Ltd

Scenario 2 - Good tool/ Development Testing
This scenario reflects the situation where an idealized top-quality static analysis tool is used (no false positives
and no false negatives). The detection of the defects is pulled forward from testing to development and all the
fixes are implemented by the developers as soon as they are detected, whilst still in the development phase.

Scenario 3 – Good tool / Compliancy in QA
The same top-quality static analysis tool is used in this scenario, however, this time the analysis is run later, at
integration/ beta testing phase. This reflects the situation where the compliancy of the code is only assessed
after development (i.e. “acceptance testing” by “QA”).

Scenario 4 – Lousy tool / False Negatives
Here the static analysis tool is not a top-notch product, and in particular it misses defects (false negatives).
We assume that the tool fails to detect 20% of defects and these escape to the field. For simplicity we only
consider the extra cost associated with rework and fixing these defects post release. (Of course, having
undetected defects in the field will also impact the business revenues, and moreover in safety-critical markets
can result in very costly litigation.)

Scenario 5 – Lousy tool / False Positives
Again a low-quality static analysis tool is assumed. In this case the tool captures all true violations but also
generates false positives. Therefore, we assume that the tool reports 20% more defects, additional to the 520
identified above. Here we also assume that it takes the same amount of time to fix a true violation as it does to
eliminate a false positive. As for scenario 4, all detections and corrections are done during the development
stage.

A summary of the key parameters used in each of these scenarios is provided below:

Scenario SDLC phase Total

Development
Unit Testing

Integration
Beta Testing

Post
Release

1 - Reference
% 30% 60% 10% 100%

diagnostics 156 312 52 520

2 - Development Testing
% 100% 0% 0% 100%

diagnostics 520 0 0 520

3 - Compliancy in QA
% 0% 100% 0% 100%

diagnostics 0 520 0 520

4 - False negatives
% 80% 0% 20% 100%

diagnostics 416 0 104 520

5 - False positives
% 120% 0% 0% 120%

diagnostics 624 0 0 624

All scenarios
Time to

find and fix
1x 3x 10x

Results
Costs - in terms of time - have been computed for the 5 scenarios. As outlined above, in our simplified model
the time required to find and fix each defect is determined solely by the SDLC phase when the fixing activity
takes place.

11 WP142B/12/14 © 2014 Programming Research Ltd

0

200

400

600

800

1000

1200

1400

1600

Scenario 1 -
Reference

Scenario 2 -
Development

Testing

Scenario 3 -
Compliancy in

QA

Scenario 4 -
False Negatives

Scenario 5 -
False Positives

Post Release

Integration
Beta Testing

Development
Unit Testing

Scenario Time cost to fix F&F defects
@ SDLC phase

Total Time
(/cost)

Development
Unit Testing

Integration
Beta Testing

Post Release

1 - Reference 156 936 520 1.612

2 - Development Testing 520 0 0 520

3 - Compliancy in QA 0 1560 0 1.560

4 - False Negatives 416 0 1.040 1.456

5 - False Positives 624 0 0 624

Scenario 1 shows the worst performance in
terms of costs. The main reason for this is the
fact that the bulk of the fixing activity is delayed to
the later (more expensive) stages of the cycle.

As expected, scenario 2 has the best outcome
as this scenario considers an accurate tool
which eliminated defects as early as possible
in the SDLC.

Scenario 3 demonstrates the negative impact
on the RoI that results when the use of the
tool is postponed from development to
integration/ beta testing – a mindset where the codebase is written first and the tool used subsequently to
verify compliance. Despite having a top-tier tool, the RoI is greatly diminished as the tool is being deployed
sub-optimally.

The deterioration of the RoI in scenario 4 is quite apparent. Again it is worth highlighting that this simple
model does not take account of any additional damages or litigation costs when severe defects escape to the
field (especially in safety-critical systems).

Finally, as anticipated false positives generate an overhead which creates a proportional increase in
costs (scenario 5). Thus, when compared to scenario 2, the additional 20% of diagnostics lead to a 20%
increase in costs.

Conclusions
In this whitepaper we have identified 10 key drivers which have a material impact on the static analysis RoI,
and we have drilled down to explore these at an operational level (e.g. a level at which meaningful actions can
be initiated).

The results from the analysis of an open source project have provided an additional insight into the potential
quantitative impact on the RoI based on 5 different scenarios.

We note that in practice it can be tricky to calculate the RoI, in particular, due to the fact that it can be difficult
to accurately estimate some of the costs and revenues. For example, it is easy to see the price of a tool, but
less obvious to see the cost of developers continually reworking code or spending their time chasing false
positives. One way to help to be more objective when selecting a static analysis tool, is to evaluate the
performance of the tool on a sample of your own code in terms of:

1. Technical ability of the tool (effectiveness)

2. The resulting RoI

When our customers evaluate PRQA’s solutions, we cover both of these areas.

12 WP142B/12/14 © 2014 Programming Research Ltd

Glossary
FR Functional Requirement
F&F Find & Fix
NFR Non-functional requirement
P&L Profit & Loss
QA Quality Assurance

RoI Return on Investment
SDLC Software Development Life-Cycle
TU Time unit
V&V Verification and Validation

References
[1] e. a. L. Lazić, “Estimating Cost and Defect Removal Effectiveness in,” in INFOTEH-JAHORINA, vol. 12, 2013.

[2] G. N. T. Suma V, “Defect Management Strategies in Software Development,” in Recent Advances in Technologies, 2011.

[3] V. S. T.R. Gopalakrishnan Nair, “The Pattern of Software Defects Spanning,” International Journal of Software Engineering (IJSE),

July 2010. [4] A. Vladu, “Software Reliability Prediction Model Using Rayleigh Function,” in U.P.B. Sci. Bull., Series C, Vol. 73, Iss. 4, 2011, 2011.

[5] S. H. Kan, “Metrics and Models in Software Quality Engineering,” 2003.

[6] M. C. A.A. Frost, “Advancing Defect Containment to Quantitative Defect Management,” CrossTalk, no. December, 2007.

[7] W. Humphrey, “A Personal Commitment to Software Quality,” in 5th European Software Engineering Conference, 1995.

[8] ISO/IEC, “9126-1:2001: Software engineering -- Product quality -- Part 1: Quality model”.

[9] F. B. C. Weimer, “Continuous Code Inspection,” PRQA White Paper, 2013.

[10] M. Baluda, “Automatic Structural Testing with Abstraction Refinement and Coarsening,” in European Software Engineering

Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, 2011. [11] R. Bartholomew, “Using Combinatorial Testing to Reduce Software Rework,” CrossTalk, no. January/February, 2014.

[12] A. P. S. Sulistyo, “PMG-Pro: A Model-Driver Development Method of Service-Based Applications,” in 15th International SDL Fourm,

2011. [13] C. Jones, “Software Quality and Software Economics,” Software Quality, Reliability, and Error Prediction, vol. 13, no. 1, 2010.

[14] C. Study, Static Analysis - for Manual Code and Auto-generated Code, PRQA, 2014.

[15] L. Rierson, Developing Safety Critical Software – A Practical Guide for Aviation Software and DO-178C Compliance, CRC Press,

2013. [16] L. W. S. Heckman, “On Establishing a Benchmark for Evaluating Static Analysis Alert Priorization and Classification Techniques,” in

Empirical Software Engineering and Measurement (ESEM), 2008. [17] D. A. J. M. B. F. Wedyan, “The Effectiveness of Automated Static Analysis Tools for Fault Detection and Refactoring Prediction,” in

International Conference on Software Testing, Verification and Validation (ICST 2009) pp. 141-150, 2009. [18] G. M. B. Chess, “Static Analysis for Security,” IEEE Security & Privacy, no. November/December 2004 Issue.

[19] H. V. H. K. B. M. Temmerman, “KriCode Research Report I: Comparative Study Of MISRA-C Compliancy Checking Tools,”

TERALabs, 2010. [20] PRQA, “Comparative Study Of MISRA-C Compliancy Checking Tools,” [Online]. Available:

http://www.programmingresearch.com/content/white-papers/prqa-white-paper-tera-labs-static-analysis-tool.pdf. [21] R. f. NIST, “The Economic Impact of Inadequate Infrastructure for Software Testing,” 2002. [Online]. Available:

http://www.nist.gov/director/planning/upload/report02-3.pdf. [22] H. Gall, ReUse: Challenges andBusiness Success, Advanced Software Engineering, FS 12 - University of Zurich, 2010.

[23] D. M. Mehta, “Effective Software Security Management,” OWASP - Open Web Application Security Project, 2007.

[24] S. Goldfarb, “Industry Metrics for Outsourcing and Vendor Management,” Q/P Management Group Inc., 2008.

[25] R. P. M. S. A. Dautovic, “Automated Quality Defect Detection in Software Development Documents,” in SQM 2011 - ifth International

Workshop on Software Quality and Maintainability, 2011. [26] C. P. J. Zou, “Control Cases during the Software Development Life-Cycle,” in IEEE Congress on Services - Part I, 2008.

[27] J. C. L. Amar, “Measuring the Benefits of Software Reuse,” [Online]. Available: http://www.drdobbs.com/measuring-the-benefits-of-

software-reuse/184406111. [28] C. C. Weber, “Assessing Security Risk In Legacy Systems,” [Online]. Available: https://buildsecurityin.us-cert.gov/articles/best-

practices/legacy-systems/assessing-security-risk-in-legacy-systems. [29] F. Bolger, “Controlling automotive software deviations in a MISRA compliance environment,” 2014. [Online]. Available:

http://embedded-computing.com/articles/controlling-misra-compliance-environment/#. [30] F. Bolger, “The Best Coding Standards Eliminate Bugs,” PRQA White Paper, 2011.

[31] V. L. d. Mendonça, “Static Analysis Techniques and Tools: A Systematic Mapping Study,” in ICSEA 2013 : The Eighth International

Conference on Software Engineering Advances, 2013.

About PRQA

Established in 1985, PRQA is recognized throughout the industry as a pioneer in static analysis, championing
automated coding standard inspection and defect detection, delivering its expertise through industry-leading
software inspection and standards enforcement technology.

PRQA has offices globally and offers worldwide customer support. Visit our website to find details of your
local representative.

Email:
Web:

All products or brand names are trademarks or registered trademarks of their respective holders.

mailto:info@phaedsys.com
http://http://www.phaedsys.com/principals/programmingresearch/
chills
Typewritten Text

chills
Typewritten Text

chills
Typewritten Text
info@phaedsys.com

chills
Typewritten Text
www.phaedsys.com

chills
Typewritten Text
Supplied by

http://http://www.phaedsys.com/principals/programmingresearch/

	Return on Investment
	A business case for Static Analysis
	December 2014
	Introduction
	A) KEY DRIVERS
	1 - Defects lifecycle
	One of the most obvious and fundamental RoI drivers is the characterization of the injection and subsequent removal of defects.
	Much research has been conducted on this subject [1] [2] [3]. For example an empirical study conducted across several projects from various service-based and product-based organizations [2] reveals a typical distribution:
	The defect introduction and removal pattern is usually modeled as a Rayleigh distribution [4] [5]:
	It is also a universally accepted principle that the time (and, therefore, the cost) to resolve a defect increases dramatically when the fix is deferred to later in the SDLC [1] [6] [7]. The table below provides a summary of some recent research [6] a...
	2 - Testing
	3 – Code reuse
	4 – Lifecycle models
	5 - Automation
	6 – The effectiveness of the static analysis tool
	7 – Certification requirements
	8 – Coding standard support
	9 - The Development perspective – beyond the cost
	10 – The Business perspective – the revenue side

	B) ROI ANALYSIS – AN EXAMPLE
	Case studies
	Results

	Conclusions
	Glossary
	References
	About PRQA

