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A Return on Investment (RoI) calculation is often complex due to the number of 
parameters involved and the diverse nature of these parameters. Some of these 
drivers are relatively easy to identify and others are harder to grasp and more difficult 
to quantify. In this whitepaper we identify and discuss 10 key drivers that impact the 
optimization of the RoI in relation to static analysis. We also generate scenarios based 
on the analysis code from a real open source project to help to demonstrate and 
quantify the potential impact on the RoI. 
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Introduction 
 
Detailed RoI calculations are complex, and need to take account of many factors such as the timing of the 
cost/revenue streams, the timescale under consideration, the accuracy of forecasts, perceived risks, cost of 
capital, and so on. However, simplistically the RoI boils down to two primary constituents: the costs and 
the revenues.  
 
In this whitepaper our primary focus is on the Software Development Life-Cycle (SDLC), and we look at how 
common SDLC parameters (and in particular those related to static analysis) impact the RoI. It is worth 
noting in advance that this SDLC dialogue relates predominantly to the cost side of the RoI equation. 
However, ultimately these drivers also clearly have the potential to enable subsequent incremental revenue 
streams.  
 
First, we identify 10 key drivers and discuss how these impact the RoI. Then, we examine the static analysis 
output from an open source project and use this data to provide help to substantiate the impact of these 
drivers. 
 

A) KEY DRIVERS 
 
1 - Defects lifecycle 
 
One of the most obvious and fundamental RoI drivers is the characterization of the injection and 
subsequent removal of defects. 
 
Much research has been conducted on this subject [1] [2] [3]. For example an empirical study conducted 
across several projects from various service-based and product-based organizations [2] reveals a typical 
distribution: 
 

SDLC Phase % of defects introduced 

Requirements 50% to 60%  
Design 15% to 30% 
Implementation 10% to 20% 
Other (e.g. bad fixes) Up to 20% 

 
 
The defect introduction and removal pattern is usually modeled as a Rayleigh distribution [4] [5]: 

 
It is also a universally accepted principle that the time (and, therefore, the cost) to resolve a defect increases 
dramatically when the fix is deferred to later in the SDLC [1] [6] [7]. The table below provides a summary of 
some recent research [6] and this data is representative of the escalating costs as identified by the broader 
body of research:  
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In deliberately simplistic terms, the most effective 
approach is to a) find ways to stop introducing 
defects in first place, b) find ways to move up the 
resolution of defects to push the apex of the 
Rayleigh curve leftwards and downwards.  
 
In many respects, this defect injection and removal 
profile is the key driver behind the RoI. However, this 

observation is very much made at a high level. It is necessary to drill down into the underlying drivers and the 
root causes and to really understand how these impact the RoI. 
 
2 - Testing 
 
When defects do escape (especially to the field), the first reaction is to blame inaccurate, inefficient or 
incomplete testing. This behavior is founded on the widespread myth that testing by itself provides sufficient 
evidence for high integrity and quality. 
 
Of course, testing is crucial, but what many people fail to appreciate is that testing is not a panacea: 

 Testing is predominantly 

associated with functionality. 

There is a broad consensus in 

software community that it is not 

adequate for a software system to 

meet the expected functional 

requirements (FRs – describe the 

behaviors required to support the 

user’s need) without considering 

non-functional or structural 

requirements (NFRs – identify the 

attributes that address the internal 

integrity of the system). A useful 

model, which outlines the differences, is provided by ISO/IEC – 9126 [8]. There is some overlap 

between functional and structural requirements, for example, where functional requirements identify 

specific Reliability and Efficiency goals expected from the user’s external view [9]. The relevance of 

this to the RoI relates to the fact that, 1) not only FRs need considered, and, 2) when individual 

FRs and NFRs are considered these can be tested/verified at different stages in the SDLC. 

Therefore, there is a very real possibility to pull some of these forward from testing to 

development. 

 

 100% test coverage is not realistically achievable. There are several 

reasons for this. Firstly, it is not feasible or practical to generate test cases 

to cover every conceivable eventuality, to execute every specific statement, 

branch, condition and edge case [10]. Investing in increasingly granular test 

cases becomes a law of diminishing returns. Secondly, it’s almost 

impossible to have complete coverage in the case of infeasible paths, dead 

code or defensive programming – complexity tends to grow exponentially 

and so do the number of test cases required [10]. It is worth noting that in 

contrast to this static analysis has the potential to cover 100% of the code. And also that 

dataflow analysis, which models the run-time behavior of a program, provides a very effective 

mechanism to help to identify different classes of problems (e.g. invariant/redundant operations, 

dereferencing of NULL pointers, overflow / wraparound conditions etc.) 

SDLC Phase Cost to resolve defect 

Requirements 1x 
Design 3-6x 
Coding 10x 

Development 15-40x 
Acceptance 30-70x 
Operations  40-1000x 
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 Testing is expensive: The rework required to fix late-detected software 

defects is one of the largest single components of their development cost 

[11] [12]. Defect detection invariably requires numerous iterations of 

finding/ fixing issues followed by re-integration (which, in turn, can and 

will introduce new defects), and as the detection time slips to later 

stages of the lifecycle, costs increase. 

 

 Testing extends delivery times. In the most simplistic scenario, a defect identified in testing needs 

to be passed back to development, fixed, reintegrated and retested. This cycle can seriously impact 

delivery times. It also introduces risk and uncertainty - we have all experienced projects that are 

ready to ship “next week” and then suddenly slip to “next month”. In practice, this scenario is usually 

too simplistic, typically additional test-fix-test iterations are required, for example: 

o when the initial fix from development does not resolve the issue  

o when the regression testing discovers that the initial fix has injected new defects 

Studies of safety-critical, embedded systems have shown that the rework required to fix late-detected 

software defects is one of the largest single components of their development cost and schedule [11] 

[12]. 

 

 The structural quality of the code entering testing is important. Thus, for example: 

o As code becomes more complex, it becomes more difficult to test. Linear increases in 

complexity place an exponential burden on testing. Thus, controlling complexity during the 

design/coding phase (for example, via cyclomatic complexity metrics, function structure 

diagrams, etc.) can have a major impact on the scope/cost of testing.  

o When testers are focusing primarily on functionality, they do not want to be distracted by 

underlying structural issues, or have these mask the functional defects.   

o Resolving a bug found in well structured code is a completely different proposition to doing 

the same in a chaotic, inhomogeneous code base. 

 

 Testing uses critical experienced resources – This activity requires proper training and rich 

experience in order to plan and execute effectively; even with automation, verifying functionality is 

painstaking work; when it is mired in code structural defects and associated repairs chaos ensues. [9]  

So, testing remains extremely 
important, but also has significant 
limitations. The table here on the left 
provides a good summary of the range 
of defect removal efficiency levels for a 
variety of reviews, inspections, static 
analysis and several kinds of test 
stages. As shown, most forms of 
testing are less than 35% efficient in 
finding bugs or defects [13]. 
 
Testing clearly does not sit in a 
vacuum, and has huge inter-
dependencies with development and 

the use of static analysis. The RoI for static analysis cannot be considered in isolation, but also needs to 
take account of other stages in the SDLC. In particular optimizing the static analysis RoI should also involve 
two distinct challenges related to testing: 



 
 

 

    
5 WP142B/12/14 © 2014 Programming Research Ltd 

 pulling the detection of defects forward from testing to coding, (a process sometimes referred to 

as development testing), noting also that this paradigm shifts part of the accountability for final 

software quality from QA to development  

 making testing more effective, by striking the appropriate balance between functional and non-

functional testing, maintaining more stable, cohesive and well-structured code base (spaghetti code –

that is code with a tangled and convoluted structure, often result of legacy code modified during the 

years - will require more time to be maintained, it will break more easily and it will more likely produce 

unintended effects, including delays due to additional regression testing). 

3 – Code reuse 
 
In most commercial software releases the percentage of code that is freshly created, in house, from scratch, is 
generally very low - in reality the majority of code is existing code which is being reused.  
 
There are many good legitimate reasons for code reuse, and clearly one of the key incentives is to improve 
the RoI. However, we note that there are many different flavors of “existing code” and it is extremely important 
to understand that each comes with their own sets of pros and cons. As companies start to rely on code that is 
generated outside the perimeter of their core controlled development process, they need to be conscious of 
these different characteristics and the broader cost implication. We highlight five key categories of code 
below:  
 
a) Legacy  
In principle, legacy code falls squarely under the company’s core development process. However, experience 
shows that this code will typically have evolved over many years in a way that is inconsistent and no longer 
aligned with today’s processes and best practices. The appropriate versions of the key development tools are 
no longer supported and often the developers who created the code have moved on (to different projects or 
different companies). 
 
The supposition that all legacy code is “proven-in-the-field” and, therefore, automatically suitable to be re-
used, (for example, on different target hardware or within a different system), also needs challenged, 
especially with relation to safety related systems.  
 
Clearly static analysis tools and coding standards have a significant role to play in providing development 
teams with insights into the structural integrity of legacy code, and also in terms of proving mechanisms to 
update this code to comply with today’s coding standards and best practices.  The potential to impact the RoI 
(and to reduce the risk) is clear. 
 
b) Open Source software (free & commercial) 
Open source code and libraries are similar to legacy code in the important respect that the source code is 
available to the development team. Again, there are clear commercial incentives to reuse this code, but the 
big question this time relates to the code’s uncertain provenance (and ongoing support). Different vertical 
markets have even coined their own terminologies as they work to develop frameworks which enable them to 
leverage these types of code (e.g. in the medical domain IEC 62304 identifies Software Of Unknown Pedigree 
(SOUP) - and A&D recognizes Commercial Off The Shelf (COTS). 
 
The fact that the source code is accessible again creates an immediate opportunity for static analysis 
tools and coding standards to contribute positively to the RoI.  
 
c) Auto-generated Code 
The verification of the auto-generated code leverages the reliability of the automated code generator and is 
also qualified-through-use based on previously deployed codebases. Again there are opportunities to apply 
static analysis, the RoI being very dependent on tool’s ability to identify and selectively evaluate handcrafted 
code.  
 

http://www.programmingresearch.com/solutions/coding-standards/
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One interesting approach adopted by some teams with relatively small codebases is to use MDD for design, 
visualization and modeling – but not to auto-generate code. They have come to the conclusion that it is more 
cost effective to hand generate and verify these relatively small sections of code [14]. 
 
d) Outsourcing 
The trend for software outsourcing continues to grow. There are good reasons for this including [15]: 

 addressing staff shortages 

 reducing labor costs 

 specialized skills availability 

 round-the-clock workflow.  

Outsourcing comes in many guises. Sometimes the scope is limited to the software and sometimes the 
software is bundled with the hardware. Take for example the automotive industry where the OEMs’ supply 
chain is deep and extensive. In this case the OEMs typically demand that the suppliers develop code which is 
MISRA compliant and also ask them to provide evidence of this compliance (often even requesting that this is 
done via QA∙C). This provides the OEMs with a guarantee of the structural integrity of the software.  
 
One crucial milestone is the point at which the outsourcer completes their development and this is signed-off 
and handed back to the vendor, or indeed whoever is responsible for ongoing maintenance. If the 
maintenance contract is outsourced (e.g. the client pays – say - 20% per year for support, bug fixes, and 
minor enhancements), it will be extremely profitable for the provider if the code is high quality and easy 
to understand and maintain. Equally, if the provider inherits code, which is structurally poor (spaghetti), the 
cost of maintenance and defects resolution can be extremely high (as the risk is). 
 
4 – Lifecycle models 
 
As already noted, identifying and helping to fix defects as soon as possible after they arise and as early as 
possible in the SDLC process is fundamental to static analysis and has a major impact on the RoI. Early and 
often are also fundamental tenets in incremental/iterative development approaches, such as Agile and 
Continuous Integration/Continuous Delivery.  
 
Agile advocates short (typically 4-8 week) sprints, with the additional objective that the code is fit to release at 
the end of each sprint. Consequently, the code needs to be kept in a consistently good state and defects, 
therefore, have to be removed soon after their introduction. Procrastination is not an option.  
 
Similarly with Continuous Delivery, the objective here is also to keep the code in a consistently good state and 
automated checks as are typically performed on every check-in. Therefore, it is not surprising that static 
analysis integrates extremely well into these processes – the fact that these implementations dictate that 
the analysis is performed early and often, tends to improve the static analysis RoI. 
 
In comparison, traditional sequential models, like Waterfall or V-model, have a greater potential to delay the 
discovery of defects, and this is especially true if it is assumed that many of the defects injected in the 
coding phase will remain dormant until discovered later in the testing phase. And in these sequential 
processes considerable time can pass between coding and testing. Under this regime, as previously 
discussed, maximizing the static analysis RoI means pulling the defect resolution forward from testing to 
development.     
 
5 - Automation 
 
Automation is clearly one of the key efficiency drivers and is a relevant consideration for practically every 
process in the SDLC and across the complete development tool-chain. 
 
The automation of static analysis is especially pertinent from two perspectives. The first, relates to the 
integration into the different SDLC processes (as discussed above), and the second, relates to the 
effectiveness of the tool in analyzing the source code (and this is discussed in more detail in the next section).  
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However, automation - in its own right - delivers many benefits which are particularly pertinent to the RoI, for 
example: 

 scalability - the ability to easily increase the volume of analysis 

 speed - dramatically improving duration of the analysis 

 consistent and predictable - an automated tool will deliver the same results every time. Individuals, 

with different levels of expertise, will not.  

 independent - the output from a tool will be objective, different individuals have different perspectives 

 precision & accuracy – often delivering a higher quality of output  

 traceability – automated process tend to leave documented (audit) trails that can be used as 

evidence of enforcement or verification  

 critical expert resources – can be freed from mundane repetitive tasks and reassigned to value-

added activities. 

6 – The effectiveness of the static analysis tool 
Unfortunately, the great deal of benefit originating from the adoption of automated processes can be 
seriously jeopardized by the adoption of ineffective static analysis tools. 
 
False positives 
The obvious impact of a high number of false positives in the analysis results is the extra time and cost 
required for developers to assess, identify and eliminate these [16] [17]. 
 
This may not be a major issue if a limited number of rules are being run on a small sample of code. However, 
as the number of rules and code size increases, the implications (extra cost and time) of using a noisy tool 
become very apparent. Furthermore, note the very real danger that many false positives will ultimately destroy 
the credibility of a tool and result in poor adoption by the development teams.  
 
False negatives 
While false positives impact the overall productivity of the operator, false negatives can be way more 
dangerous, because they lead to a false sense of confidence [18]. This risk is explicitly highlighted in 
many standards including DO-178, IEC 61508 (and family) and MISRA.  
 
Introducing the definition of precision as 
the percentage of true positives on the 
total detected defects, and accuracy (or 
recall) the percentage of correct 
classifications (true positives and true 
negatives), the best static analysis 
tools rate the highest precisions and 
the highest accuracies [16]. This topic is 
nicely summarized by showing the output 
of independent research by TERALabs 
[19] [20] into the effectiveness of a range 
static analysis tools in enforcing 11 key 
MISRA C rules. In the case of the 
performance of QA∙C was exemplary - 
identifying all rule violations, no false 
positives.  
 
One further consideration - somewhat linked to the topic of false negatives - is to get a clear understanding as 
to the scope of the tool and what categories of defects are detected. For example, in relation to coding 
standards, what is the rule coverage? Modern coding standards like MISRA C:2012 are specifically designed 
to make a clear distinction between those areas that can be verified using static analysis tools (rules) and 
those which require manual interaction (directives). Beware of any tools that purport to have 100% coverage! 

∙ 

http://www.programmingresearch.com/solutions/static-analysis/
http://www.programmingresearch.com/content/white-papers/prqa-white-paper-tera-labs-static-analysis-tool.pdf
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7 – Certification requirements 
 
Modern safety-critical projects are typically needed to adhere to modern quality standard. Whether it is in 
automotive, avionics, defense, medical, rail, nuclear and so on, there are industry-recognized standards (ISO 
26262, DO-178B/C, IEC 62304, EN 50128, IEC 60880) that the software has to comply with. Tools deployed 
within these projects need be fit-for-purpose for the user to achieve such compliancy. In some cases – like in 
DO-178B and in the most recent DO-178C with its supplement DO330 – there is the formal requirement to 
use qualified tools.  
 
Clearly, the RoI is impacted by the availability of certified / qualified tools, and if this burden is placed on the 
user (and/or the user opts to do the certification process on their own) this can result in significantly increased 
costs and uncertainty for the project. 
 
8 – Coding standard support 
 
One of the main purposes behind coding standards is to define a safer and more deterministic sub-set of the 
chosen language, encouraging best practices, eliminating situations where undefined behaviors can arise and 
helping to identify coding errors (e.g. initializations, name-hidings, unreachable code, etc). 
 
Whether an widely-recognized standard is adopted (such as MISRA, JSF or HIC++), or alternatively an in-
house standard, (the latter possibly derived from the former with the integration some customized rules, like 
dedicated naming conventions), a static analysis tool has to provide full support to coding standards 
enforcement; availability and customizability are key values to select among different products. 
 
Most developers, whether novice or experienced, recognize the fact that coding standards have been created 
by teams of acknowledged experts who have an extremely deep understanding of their programming 
language and know the potential risks and pitfalls. What’s more, most are available for a token price or free. 
The bulk of the costs (and potential cost savings) relate to the effective implementation of these best 
practices. Consequently, it is much more effective, from a technical perspective as well as from a cost 
perspective to leverage these rule-sets rather than trying to “invent” new rules from scratch. Indeed, it is worth 
noting the reaction of auditors, they are immediately reassured when they see recognized coding standards 
being adopted, and are very keen to scrutinize the justifications for deviations and “alternative” rules that have 
been created in-house. 
 
9 - The Development perspective – beyond the cost  
 
As flagged up in the introduction, the examples above tend to focus on efficiency 
improvements and cost savings, and relate primarily to development activities 
and the SDLC process. However, the benefits to the engineering team are not 
limited solely to cost savings. Per the traditional Project Management triangle, there 
are also associated improvements in relation to delivery times, quality (and 
predictability), for example: 

 quicker delivery times and shorter intervals between consecutive 

deliveries 

 increased confidence in quality of code – internal and external  

 safer adoption of open source modules 

 stronger acceptance gateways for outsourced activities 

 easier support and maintenance operations 

 improved delivery predictability. 

 
10 – The Business perspective – the revenue side  
 
From the business perspective, there are clear benefits in improving the efficiency of engineering – and 
delivering more for every $ spent.  However, the incremental revenue – increased unit sales and/or higher 
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prices – will potentially have an even greater impact on the RoI (and the P&L). And clearly it is the output 
from development that enables for this incremental revenue.   
 
The primarily aim of this whitepaper has been to cover the SDLC/ development side. Therefore, we will resist 
diving deeper into the business and revenue scenarios. However, the list below will help to identify some 
specific opportunities for further cost reductions and improved revenues for business operations as a whole. 
 
Cost related items: 

 reduce development cost 

 reduce support and maintenance cost 

 reduce warranty cost 

 reduce cost of product recalls 

 reduce legal liabilities /cost  

Revenue related items: 

 reduce time-to-market 

 improve sales volumes 

 improve quality 

 increase prices 

 quicker to respond to market opportunities 

 quicker to respond to competition 

 improved brand equity / reputation 

 improved predictability, lower risk. 

 

B) ROI ANALYSIS – AN EXAMPLE 
 
To test the ideas discussed so far, we selected a small open-source 
project and looked to remove all MISRA C:2012 related diagnostics. 
The selected project was time-1.7 (the GNU version of the utility that 
measures a program’s usage of resources, such as time and CPU). 
This release is composed of 6 header and 5 source files and 
roughly 2.000 lines of code. 
 
The code was analyzed using PRQA QA∙C v.8.2 with MISRA 
C:2012 compliance module. Using this setup, the tool detected a 
total of 520 diagnostics.  
 
In the scenarios below it is assumed that we resolve all these 
violations. 
 
With respect to the lifecycle, we have simplified this into to 3 phases: 

 Development/ Unit Testing 

 Integration/ Beta Testing 

 Post Release. 

We have assumed that the average time to find and fix a defect is 1 
hour during the development phase, increasing to 3 hours during the 
integration stage and to 10 hours post release. Note, when comparing 
the outcomes of the scenarios the ratio (1:3:10) is more significant 
than the absolute values.  These find and fix times remain constant 
throughout all the scenarios below.    
 
Case studies 
We implemented 5 different scenarios, primarily focusing on the sensitivity of the RoI as the % of defects 
fixed during each phase changes. 
 
Scenario 1 – Reference Case 
As a reference case, we based the find and fix distribution roughly on the data from NIST [21], specifically; 
30% of defects are fixed during development, 60% in integration and 10% after the release of the product. 
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Scenario 2 - Good tool/ Development Testing 
This scenario reflects the situation where an idealized top-quality static analysis tool is used (no false positives 
and no false negatives). The detection of the defects is pulled forward from testing to development and all the 
fixes are implemented by the developers as soon as they are detected, whilst still in the development phase. 
 
Scenario 3 – Good tool / Compliancy in QA 
The same top-quality static analysis tool is used in this scenario, however, this time the analysis is run later, at 
integration/ beta testing phase. This reflects the situation where the compliancy of the code is only assessed 
after development (i.e. “acceptance testing” by “QA”). 
 
Scenario 4 – Lousy tool / False Negatives 
Here the static analysis tool is not a top-notch product, and in particular it misses defects (false negatives). 
We assume that the tool fails to detect 20% of defects and these escape to the field.  For simplicity we only 
consider the extra cost associated with rework and fixing these defects post release. (Of course, having 
undetected defects in the field will also impact the business revenues, and moreover in safety-critical markets 
can result in very costly litigation.)  
 
Scenario 5 – Lousy tool / False Positives 
Again a low-quality static analysis tool is assumed. In this case the tool captures all true violations but also 
generates false positives. Therefore, we assume that the tool reports 20% more defects, additional to the 520 
identified above. Here we also assume that it takes the same amount of time to fix a true violation as it does to 
eliminate a false positive. As for scenario 4, all detections and corrections are done during the development 
stage. 
 
A summary of the key parameters used in each of these scenarios is provided below: 
 

Scenario  SDLC phase Total 

  
Development 
Unit Testing 

Integration 
Beta Testing 

Post 
Release 

 

1 - Reference 
% 30% 60% 10% 100% 

diagnostics 156 312 52 520 

2 - Development Testing 
% 100% 0% 0% 100% 

diagnostics 520 0 0 520 

3 - Compliancy in QA 
% 0% 100% 0% 100% 

diagnostics 0 520 0 520 

4 - False negatives 
% 80% 0% 20% 100% 

diagnostics 416 0 104 520 

5 - False positives 
% 120% 0% 0% 120% 

diagnostics 624 0 0 624 

All scenarios 
Time to 

find and fix 
1x 3x 10x  

 
 
Results 
Costs - in terms of time - have been computed for the 5 scenarios. As outlined above, in our simplified model 
the time required to find and fix each defect is determined solely by the SDLC phase when the fixing activity 
takes place. 
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Development 
Unit Testing 

Integration 
Beta Testing 

Post Release  

1 - Reference 156 936 520 1.612 

2 - Development Testing 520 0 0 520 

3 - Compliancy in QA 0 1560 0 1.560 

4 - False Negatives 416 0 1.040 1.456 

5 - False Positives 624 0 0 624 

 
Scenario 1 shows the worst performance in 
terms of costs. The main reason for this is the 
fact that the bulk of the fixing activity is delayed to 
the later (more expensive)  stages of the cycle. 
 
As expected, scenario 2 has the best outcome 
as this scenario considers an accurate tool 
which eliminated defects as early as possible 
in the SDLC.   
 
Scenario 3 demonstrates the negative impact 
on the RoI that results when the use of the 
tool is postponed from development to 
integration/ beta testing – a mindset where the codebase is written first and the tool used subsequently to 
verify compliance.  Despite having a top-tier tool, the RoI is greatly diminished as the tool is being deployed 
sub-optimally. 
 
The deterioration of the RoI in scenario 4 is quite apparent. Again it is worth highlighting that this simple 
model does not take account of any additional damages or litigation costs when severe defects escape to the 
field (especially in safety-critical systems). 
 
Finally, as anticipated false positives generate an overhead which creates a proportional increase in 
costs (scenario 5). Thus, when compared to scenario 2, the additional 20% of diagnostics lead to a 20% 
increase in costs. 
 

Conclusions 
In this whitepaper we have identified 10 key drivers which have a material impact on the static analysis RoI, 
and we have drilled down to explore these at an operational level (e.g. a level at which meaningful actions can 
be initiated). 
 
The results from the analysis of an open source project have provided an additional insight into the potential 
quantitative impact on the RoI based on 5 different scenarios. 
 
We note that in practice it can be tricky to calculate the RoI, in particular, due to the fact that it can be difficult 
to accurately estimate some of the costs and revenues. For example, it is easy to see the price of a tool, but 
less obvious to see the cost of developers continually reworking code or spending their time chasing false 
positives. One way to help to be more objective when selecting a static analysis tool, is to evaluate the 
performance of the tool on a sample of your own code in terms of: 

1. Technical ability of the tool (effectiveness) 

2. The resulting RoI 
 

When our customers evaluate PRQA’s solutions, we cover both of these areas. 
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Glossary 
FR Functional Requirement 
F&F Find & Fix 
NFR Non-functional requirement 
P&L Profit & Loss 
QA Quality Assurance 

RoI Return on Investment 
SDLC Software Development Life-Cycle 
TU Time unit 
V&V Verification and Validation 
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