

1 / 7

The Application of IEC 61508 in the Automotive Sector

Günter Glöe, Folkert Jürgens, Gerhard Rabe
TÜV Nord Gruppe, Hamburg / Hannover

Abstract
With the IEC 61508 /IEC 61508/ there is an international standard available that provides
profound guidelines for the development and use high quality embedded systems. On a first
glance it looks as though the standard might be fit for practical application.
However, going into very detail of the standard and dealing with the requirements demanded
there leads to severe problems which are based mainly on the size of the standard and the
even high number of requirements. In addition a majority of requirements is ‘hidden’
somewhere in the text and not to be identified obviously.
To solve this problem it is recommended to use support tools. In the following presentation it
will be demonstrated how IEC 61508 is being applied in a concrete project and which
procedures have been developed to make work efficient and to meet customer’s time and
cost requirements.

The Application
A large developer of automotive systems from abroad developed an electronic steering
system which was to be verified and validated for the sake of getting official licence for the
use in Europe. The electronic system consists of sensors adjusted to a conventional steering
wheel which transfer the angle information to a microprocessor based control system. This
system itself is – via a process interface – connected to a series of final elements (valves)
that manage the steering process.
The software we are talking about has not been developed being aware of IEC 61508 and its
requirements. In addition, from its starting point it has not been for safety purpose. Relevant
parts have been designed to provide different functions needed to run certain types of cars
in a reliable manner. So, from a certain point of view mayor parts of the software may be
considered to be COTS.
Language for application software is „C“. Size of the executable code is about 100kB.
The amount of documented development information available is of the size known from
usual projects. Thus the amount of documentation is less than the size demanded by IEC
61508.
The safety aspects of this application are as follows: The electronic steering system will be
implemented into vehicles which themselves will be moving for a certain limited time on
public roads. In so far erroneous conditions may cause malfunctions of the steering system
and hence endanger persons, either in the vehicle itself, on the road or on pavements.
A risk calculation took into account that in addition to the electronic system there is a
mechanical back-up steering system which allows further operation of the vehicle in case of
electronic break down. Due to that reason the requirements for functionality, safety, reliability

2 / 7

and other quality characteristics have been imposed by experts from the automotive sector
to SIL 2.
In the course of the licensing procedure it had to be proved that all SIL 2-requirements of
IEC 61508 have been met in the electronic steering system.

Handling of IEC 61508

To handle IEC 61508 /IEC 61508/ in an efficient and reproducible manner we used the
RiskCAT tool /CATS 2001/.

Figure 1: Screen of the IEC 61508 support tool RiskCAT

First step was to create a list of all requirements from IEC 61508 applicable
• for SIL2
• hardware and / or software
• for the life cycle phases before „Overall installation and commissioning“.

Second step was to go through the information suggested by IEC 61508-1 in tables A.1, A.2
and A3 to select those ‘information’ to be subject of assessment. Furthermore we went
through the ‘documents’ provided and identified those containing the information to be
subject to assessment. This resulted in the list of documents to be subject of

3 / 7

assessment. It contains seven documents. Because of certain reasons hardware was not in
the focus.

In the third step we went through the list of all requirements (about 450) and selected those
requirements applicable to the information under assessment. Result of this step has
been a set of seven checklists assigning the selected requirements (about 100) to the seven
documents. Two examples of the checklists are shown below. (The formatting has been
changed for this presentation. In the original checklists there is more space to give
arguments on conformance.)

Requirements

from part 3, clauses 7.2.2 and 7.2/Table A.1
degree of obli-
gation for SIL 2

Conformance

Derivation of specification from safety requirements and planning mandatory
Availability of requirements specification to SW developers mandatory
Sufficiently detailed specification to achieve required safety
integrity

mandatory

Review of the specification by developer mandatory
Developer shall consider during review safety functions,
architecture, ...

mandatory

Procedures for resolving disagreements over assignment of SW
SIL

mandatory

Clear, precise, verifiable, maintainable, ... specification mandatory
If not already defined: Detailed modes of operation of the EUC mandatory
Specification of constraints between HW and SW mandatory
Consideration of SW self-monitoring, monitoring of HW, ... mandatory
Clear identification of non-safety functions performed mandatory
Expression of required safety properties of the product mandatory
Computer-aided specification tools recommended
Semi-formal methods recommended
Formal methods including for example, CCS, CSP, HOL, LOTOS,
OBJ, temporal logic, VDM and Z

recommended

Figure 2: Checklist for Software Requirements Specification

4 / 7

Requirements
from part 3

degree of obligation
for SIL 2

Confor-
mance

Determination of division of responsibility between supplier and user mandatory
Selection of a suitable set of development tools mandatory
Consideration of tools supplying services over the whole E/E/PE-
lifetime

highly recommended

Selection of suitable programming language mandatory
If no suitable language is available: detailed justification for actual
choice

mandatory

Review and usage of coding standards mandatory
Coding standards specifying good programming practice,
documentation, ...

mandatory

Contents of source code documentation are description, inputs, ... highly recommended
Suitable programming language highly recommended
Strongly typed programming language highly recommended
Certified tools highly recommended
Tools: increased confidence from use highly recommended
Certified translator highly recommended
Translator: increased confidence from use highly recommended
Library of trusted/verified software modules and components highly recommended
Readable, understandable, testable code satisfying requirements mandatory
Review of code of each module highly recommended
Structured methods including for example, JSD, MASCOT, SADT and
Yourdon

highly recommended

Semi-formal methods highly recommended
Modular approach highly recommended
Design and coding standards highly recommended
Structured programming highly recommended
Use of trusted/verified software modules and components (if
available)

highly recommended

No dynamic objects highly recommended
No unconditional jumps in programs in higher level languages highly recommended
Software module size limit highly recommended
Information hiding/encapsulation highly recommended
One entry/one exit point in subroutines and functions highly recommended
Fully defined interface highly recommended

Figure 3: Checklist for Code

Because quality is achieved during design and development the most important use of these
checklists would be to give them to the design and development team at the start of the
project and ask for compliance with these requirements. By this final testing and certification
should be without any problems.
However – as usual today – in the project we report about, these requirements as well as the
checklists were created by the assessors after design and development. So the fourth step
handling IEC 61508 was to ask for the producer’s arguments for compliance with the
subset of requirements given in the checklists. Authors feel that this may be the most
important step in an assessment:
• to assist designers and developers in recognising the requirements imposed on

embedded controllers and their software according to the state of the art (IEC 61508) and

5 / 7

• to assist designers and developers in recognising themselves the extent of compliance of
their products with state of the art.

Last step will be assessors evaluation of the arguments given with respect to standards
conformance.

Results
The results presented here are not the specific results of the project discussed until now but
some general observations.
Reflecting the results from IEC 61508 conformance checklists it may be recognised that
products / the producing companies meet about one third to about half of the IEC 61508
requirements without any special preparation. To meet the second half needs additional
effort. Therefore it is useful or even necessary to decide about IEC 61508 compliance needs
at the beginning of development. To require IEC 61508 compliance after having finished the
development in most cases will not lead to good success. Consequence for customers – of
control systems as well as of libraries or tools – is that it is not very promising just to buy a
component and assume IEC 61508 compliance if no special precautions were taken.
IEC 61508 puts the same emphasis on static analysis as on dynamic testing as may be seen
in the following table:

Technique/Measure Ref SIL1 SIL2 SIL3 SIL4
1 Formal proof C.5.13 --- R R HR
2 Probabilistic testing C.5.1 --- R R HR
3 Static analysis B.6.4

Table B.8
R HR HR HR

4 Dynamic analysis and testing B.6.5
Table B.2

R HR HR HR

5 Software complexity metrics C.5.14 R R R R

HR: the technique or measure is highly recommended for this safety integrity level.
If this technique or measure is not used then the rationale behind not using it
should be detailed during the safety planning and agreed with the assessor.

R: the technique or measure is recommended for this safety integrity level as a
lower recommendation to a HR recommendation.

Figure 4: Table A.9 from IEC 61508-3

Because no static analysis results have been provided by the producers the assessors made
their own mind on the code quality by static analysis. As may be well known strength of
dynamic testing is

6 / 7

• to assure that required functions – especially frequently needed ones – are well
performed.

Strength of static analysis is
• to identify code properties which may cause trouble – especially in unusual situations.

Typical situations were safety related systems are really needed are seldom encountered
unusual situations. So static analysis is important to assure reliable functioning and avoid
crashes just in unusual situations. What has been found by analysis – not just in the project
we are talking about here – is that

• routines are not only interconnected via CALLs and RETURNs but as well via JUMPs

• unused interrupts are not served with an error handling routine but may enter just
somewhere into some routine

• unused memory is without defined contents instead of well defined statements leading to
error handling

Looking at actual code it may be recognised that quality of application software in a lot of
cases is better than quality of libraries or other pre-developed components.

• Each box presents a routine.
• Dotted red lines are JUMPs.
• The black line is a CALL.
• Problem: Stack-Balance?

Figure 5: (Typical) part of the calling hierarchy of a library

Conclusions
The project and procedures we presented here – and even a lot of other similar projects –
demonstrated that IEC 61508 can practically be applied only with the support of electronic
tools, like RiskCAT. This is mainly caused by the immense size of the standard and the high
number of requirements. And even the identification of requirements in the text (shall,
should, may) is difficult and time consuming.

7 / 7

The use of a tool enables the extraction of requirements (out of the huge number of
requirements) that are relevant for the application and directly related to the appropriate SIL.
By this the amount of effort can be calculated much more efficient.

Another result of this project is the evidence that a ‚post-development‘ assessment based on
IEC 61508 can be conducted with reasonable effort and within predictable time. Real ‚life‘
systems can be developed such that they comply with the requirements of this standard.

References

/CATS 2001/ Code Analyzer Tool Set (CATS);
 RiskCAT: Requirements Derivation V4.1 from IEC 61508,
 User's Manual; August 27, 2001

/IEC 61508/ IEC 61508;
 Functional safety of electrica l/ electronic / programmable electronic
 safety-related systems; 2000

