
Compiler
Validation 7

Testing Code
Generators:

A Dark Art

First Edition
by

Mrs Olwen Morgan CITP, MBCS
and

Eur Ing Chris Hills BSc , C. Eng.,
MIET, FRGS, FRSA

The Art in Embedded Systems
comes through Engineering discipline.

Compiler
Validation 7

Compiler
Validation 7

Compiler
Validation 7

2 3library.phaedsys.com library.phaedsys.com

Testing Code
Generators:
A Dark Art :

Compilers conceptually have a

front end and a back end. The back

end is the code generator that

takes intermediate code file and

produces, object code.

1 Introduction
Compilers conceptually have a front end and a back

end. The front end is the part that parses the source

language into tokens and builds a syntax tree, which

may be saved as an intermediate code file. The back end

is the code generator that takes intermediate code file

and produces either assembler or, more commonly these

days, object code ready for linking.

In practice, however, except for a few generic

compilers for older architectures, the front-end/back-

end split is no longer the same. (See our paper: “What is

a compiler?”) for more detail on this.) Modern compilers

are multi pass and start optimising for specific targets

from just after the parser in what was the front end.Also,

modern linkers will play a large part in optimisation. For

some compiler-MCU combinations more optimisation is

done in the linker than the compiler.

Contents
1 Introduction . 3

2 Testing code generators . 4
2.1 First example: assigning to volatile variables .4
2.2 Second example: common sub-expressions and recursion removal5
2.3 Third Example: Idle loops .6
2.3 Fourth Example: Idle loops .7
2.5 Where does this leave us? .7

3 So how do we test code generators? . 8
3.1 Can fixed test suites do useful code generator testing at all?8
3.2 Is there any hope for systematic coverage strategies? .8
3.3 Where does that leaves us with practical testing options?9
3.4 How do we exploit stress testing?. .9

4 Practical independent testing . 9
4.1 Finding suitable compiler options . 10
4.2 When suitable options cannot be found . 10
4.3 When suitable options cannot be found. 10
4.4 What an independent assessor may look for. 10

5 Conclusion . 11
5.1 In the short term . 11
5.2 Future prospects . 11
5.3 The pragmatist’s approach . 11

References . 12

Today almost all compilers perform optimisations.

There are many ways of translating source to binary. A

lot of it will depend on the design of the compiler, the

design of the intermediate language and the target

architecture. The optimisation switches on a compiler

merely adjust the window of optimisation a little. You

generally can’t “turn off optimisation” as such.

In our paper on choosing a test suite [C Compiler

Validation: Choosing a Validation Suite] we saw that

fixed test suites are good at testing compiler front ends,

that is the handling of syntax and static semantics, but

not so good at testing back ends or code generation.

There are several reasons for this, which we have

mentioned in the other papers in this series but will

discuss more fully in this paper.

The difficulties in testing compiler back ends should

Compiler
Validation 7

Compiler
Validation 7

4 5library.phaedsys.com library.phaedsys.com

not be underestimated. Currently, in 2020, there are no

entirely satisfactory ways to perform comprehensive

testing of C and C++ compiler back ends or code

generators. It is important for developers writing critical

software to understand why this is and what can be

done. It also goes some way to explain why compiler

validation on target is gradually becoming more

commonly required - having a validated compiler does

not remove the need for testing any binary produced by

it.

2 Testing code generators

When writing a fixed compiler test suite, the starting

point is: The Language Standard. For the

overwhelming majority of embedded systems the

relevant standards are the ISO C 9899 and/or ISO

C++14882 standards. A good test suite will contain at

least one test for each requirement of the language

standard and will thus achieve 100% requirements

coverage with respect to the standard and hence 100%

coverage of the syntax. This is why fixed test suites are

good at exercising front ends - they pretty strenuous

testing by any measure.

The situation with back-end tests is not so fortuitous.

First, a typical language standard says, at least implicitly,

what the compiler must do but leaves implementation

details to the implementer. The authors have served on

the ISO language standards bodies for C and C++ for

many years (decades) where most of the working group

members have little interest in, nor experience, of bare-

metal embedded hardware. Indeed, some parts of the

ISO C standard have been implemented on relatedly few

embedded target processors.

In addition there has been, certainly from 1990 to

2020, a convention in the ISO C working group not to

break existing implementations. NOTE in 2020 there

was a suggestion by several major companies that

C++ should only support 64 bit and above going

forward. Therefore the C standard explicitly designates

some constructs and behaviours as implementation-

defined, undefined or unspecified, leaving the

implementer to make relevant design decisions. For

example the order of expression evaluation can, subject

to operator precedence, be evaluated left to right, right to

left or middle out or any combination.

Where the implementer clearly describes the nature

of such items, it is usually possible towrite tests for them.

For code generators, however, the requirements imposed

on implementers are too general to form the basis of a

test coverage domain. This is especially true of

optimisations and effectively closes the door to robust,

traceable testing. If you have no coverage domain to

cover, then you can’t even measure coverage. The

difficulties are best shown by examples.

2.1 First example: assigning to volatile vari‐
ables

Variables declared volatile are a well-known problem

area. One paper [EEJR2008] on their use in embedded C

code suggested that cross compilers did not implement

volatile correctly. This is somewhat misconceived as the

paper really only tested a dozen or so variants of the

GCC compiler which at the time did not correctly handle

volatile – while at the same time the leading commercial

compilers did correctly handle volatile. However the

myth still remains in some quarters.

Consider the following function that sends an octet

via an external interface:

volatile unsigned char octet = 0u;

volatile unsigned char cntrl = OFF;

// sets I/O interface to inoperative

// assumes OFF defined by a #define

void SendOctet1 (unsigned char uc)

{

octet = uc;

cntrl = SEND;

// where SEND is a bit pattern used

for I/O control

cntrl = OFF;

return;

}

In this kind of coding pattern (nostalgically typical of

without. Yet in this case you could not necessarily

conclude much from a test in which the optimiser does

the right thing. It might do the right thing in one context

yet fail in another. Generally in testing optimisations, the

only helpful results are those that show the optimisers

behaviour to be incorrect in particular instances.

2.2 Second example: common sub-ex‐
pressions and recursion removal

When testing optimisations, not only is there no

traceable coverage domain but the tests themselves

cannot always be functional tests. This may seem

counter-intuitive but an example clearly demonstrates

the problem. Consider the following C functions that

calculate the greatest common divisor of two integers

(granted you wouldn’t use a recursive program in a

critical setting but it serves here to show the effects of

interacting optimisations).

int gcd1 (int p,int q) / /

assuming q <= p

{

return (p%q == 0 ? q : gcd1(q,

p%q));

}

Here we see that p%q is evaluated twice. A compiler

that performs common sub-expression elimination

might notice this and avoid it by introducing a

temporary variable so that the generated code would be

as if the programmer had written:

int gcd2 (int p,int q) / /

assuming q <= p

{

int temp = p%q;

return (temp == 0 ? q : gcd2 (q,

temp));

}

The question then arises of how you test the part of

the optimiser that performs common sub-expression

elimination. Clearly no black box test will suffice

because, if the optimiser is performing correctly, you

UARTs), uc and SEND are put into locations declared

static that will be mapped, respectively, to an I/O data

register and the corresponding I/O control register. The

mapping may be done in the linker or may be visible in

the program using extension constructs that permit

mapping of variables to absolute addresses. The

keyword volatile is here an indication to the compiler

that it should not optimise away the initialisation.

Unfortunately the standard does not prohibit the

compiler from changing the order of static initialisation.

A sensible optimiser would perform them in the order

written but the C standard does not mandate this.

Typically commercial embedded C compilers do but

compilers for desktops don’t but neither can be

depended on to do it the typical way. Also, it is very

easy for implementers to make mistakes in deciding

whether an optimisation can be safely attempted,

especially in highly optimising compilers that perform

different kinds of optimisation one after the other. To get

around this problem, a cautious developer might

rewrite the above function as:

void SendOctet2 (unsigned char uc)

{

return

((void)(octet = uc,cntrl = SEND,

cntrl = OFF));

}

where the C standard’s semantics for the comma

operator explicitly prescribe the order of assignment. To

test whether the compiler changes the order of

evaluation in SendOctet1, we would have to compare

the results of both SendOctet1 and SendOctet2. This

means that a properly veridical test must be a

differential test. It must compare the results obtained

from two different functions that are devised so as to

prevent optimisation in one case but permit it in the

other.

Moreover, just one differential test would not be

enough here. It may be that the compiler takes notice of

the volatile key word and simply leaves alone

anything that writes to or reads the relevant variables.

Hence onemight have towrite two differential tests, one

with the locations declared volatile and one

Compiler
Validation 3
Compiler

Validation 7

7 library.phaedsys.com

would expect the same output in both cases. But you

would also expect the same if the compiler were not

performing the optimisation. The kind of test you need

here is to execute the function, say, ten million times

while timing it using either a simulator or debugger with

trace. If the run times are very nearly the same, then you

can reasonably infer that no optimisation has been

performed but you would expect the second function to

run faster if it had.

To complicate things further, the compiler might also

perform an optimisation that replaces tail recursion with

iteration and might do so in addition to removing

common sub-expressions. In this case the compiler

might generate object code as if the original source were:

int gcd3 (int p,int q)

{

int tempq q;

int tempmod = p%q;

while (tempmod != 0)

{

tempq = tempmod;

tempmod = tempq%tempmod;

}

return tempmod;

}

Now the question arises of how to distinguish the

following four cases:

1. no optimisation

2. common sub-expression elimination,

3. tail recursion elimination,

4. both common sub-expression elimination and

tail recursion elimination.

Here full differential testing requires an additional

gcd function (call it gcd4) in which iteration is used

instead of recursion and there is a redundant sub-

expression evaluation. Six tests are required each one

comparing one of the six possible pairs of functions.

Even then it one might have to specify some kind of

tolerance range comparison of timings in order to get a

useful verdict because the hand-optimised versions of

the functions might not be exactly equivalents of what

the optimiser itself produces. Moreover those six cases

would be for just two interacting optimisations. If

register optimisation were possible, then onemight need

to have eight different versions of gcd and 28 different

pairwise comparisons. Combinatorial explosion looms

already.

All this potential complication arises because the C

standard imposes no requirement on an implementer to

document what optimisations are performed or whether

any are performed at all. The closest the C standard gets

to prescriptiveness here is text like the following from

clause 5.1.2.3 of the ISO 9899:1999 C standard:

“In the abstract machine, all expressions are evaluated as

specified by the semantics. An actual implementation need

not evaluate part of an expression if it can deduce that its

value is not used and that no needed side effects are produced

(including any caused by calling a function or accessing a

volatile object).”

Unfortunately the standard does not actually define

what it means for a side effect to be “needed”. Thus the

standard permits optimisations but it leaves the

implementer free to decide when optimisations are

performed without any precise provision as to when he

shouldn’t do them. Worse still is that the standard

imposes no requirement that all possible optimisations

of a particular kind should be performed. This allows the

implementer to omit optimisations atwill (orwhimsy for

that matter). It is this lack of prescriptiveness that leads

to the need for potentially large numbers of differential

tests in order to give a basis for reliable conclusions to be

drawn from the results of testing.

2.3 Third Example: Idle loops

A common coding pattern in embedded systems is

the time-triggered cycle in which a clock interrupt occurs

at regular intervals and sets off a sequence of actions that

is completed before the next interrupt occurs. When the

actions for a given cycle are completed, control passes to

an idle loop which goes around doing nothing waiting

for the next clock interrupt. To achieve this in C, some C

coding standards recommend the for construct:

for (; ;);

The problem here is that an incautious optimiser

might remove the loop entirely judging it to produce no

side effects at all. (Some early FORTRAN optimising

compilers did this, much to the initial confusion of the

people who were testing them.) A possible solution is to

write the loop as:

volatile static int mod = 7;

volatile static int cycval = 1;

...

TEST: if(cycval == 3) goto: ERROR;

// cycval is never 3

cycval = (cycval + cycval) % mod;

goto TEST;

// infinite loop

E R R O R :

return((void)(exit(EXIT_FAILURE));

}

where the final brace is the closing brace of the main

function.

(Note that the loop is coded without braces so as to avoid

cause for use of the stack, otherwise stack overflow could occur

after just a few cycles since, in an incautious implementation,

the interrupt might simply transfer control leaving the stack

unchanged. In other contexts, both the unbraced loop and the

goto statement would probably be prohibited by a coding

standard.)

Here the loop runs cycval through the sequence 1,

2, 4, 1, 2, 4, 1, 2, etc. Since 1 is a quadratic residue modulo

7, cycval can never attain any of the non-quadratic

residue values 3, 5, or 6, so the loop will never terminate.

More importantly, even though an optimiser might

erroneously ignore the volatile keyword, it has to

perform reasoning in elementary number theory to

recognise that this is an infinite loop. The author has

never known such a loop to be optimised away and

infers that few C compilers even attempt such analysis.

To test whether the loop is optimised away, wewould

have to detect the failure exit and this would necessarily

rely on highly implementation-dependent aspects of the

compiler. One could not necessarily rely even on a single

differential test to deliver the required test verdict.

2.3 Fourth Example: Idle loops

Defensive coding is a problem. It is code that is

designed to catch exceptions, unexpected errors and is

generally infeasible and cannot be executed under

normal operation. This is different to dead or

unreachable code. Most safety and security coding

standards require defensive code and at the same time

do not permit dead or unreachable code. This can be

reconciled on paperwith local rules. The bigger problem

is that the ISO C standard does permit the removal or

optimisation of un-used, dead or unreachable code. For

example: hat, they will be different to the published

standard.

enum (red,amber,green) colour;

switch (colour)

{

red: break;

amber: break;

green: break;

default: ;/* ERROR!*/

}

When we ran tests on this we discovered that most

embedded cross compilers do not remove the default

clause. This is because their authors know that in

embedded systems there is hardware that may or may

not change things outside the knowledge of the software.

The notable exception is GCC which, in this instance,

sticks to the ISO-C requirement and silently removes the

default.

It is not just the default in switch constructs but

other similar defensive coding constructs that can be

silently removed. The problem is as with opening the

fridge door to see if the light is on, almost any test that

involves instrumenting the code will give a legitimate

path and the default will not be removed. Therefore

testing for this sort of construct has to be done very

Compiler
Validation 7

Compiler
Validation 7

8 9library.phaedsys.com library.phaedsys.com

carefully and on the normal production binary, not on

test code.

2.5 Where does this leave us?

The foregoing three examples barely scratch the surface

of many difficulties in testing code generators with

interacting optimisations. Yet they already show us just

some of the difficulties of testing:

• we need to perform differential testing.

• we need to observe non-functional aspects of

behaviour.

• we need quite contrived tests to enable us to

compare the effects of optimisation vs. no

optimisation.

• the possibilities are not just optimisation vs. no

optimisation; we have to consider the possible ways

in which faulty and interacting optimisation may

affect tests.

• unavoidable reliance on implementation-

dependent aspects of the compiler means that it may

not be possible to make differential tests reliably

veridical; for any given aspect of optimiser behaviour,

several sets of differential tests may be needed to

cover the range of implementations expected in

practice.

• there is little in the C standard to which we can

make tests traceable or that can serve as a widely

agreed basis for defining systematic coverage

domains; syntax rule coverage is nowhere near

strong enough to cover the differentways inwhich an

optimiser may behave.

This maymake uswonder whether attempting to test

code generators and optimisers is worthwhile at all. It

turns out that it is but that inherent technical limitations

constrain what can be achieved in practice.

3 So how do we test code generators?

The discussion in Section 2 makes it sound as though

the prospects for testing optimising code generators are

uniformly poor if not impossible in any meaningful way.

Fortunately this is not the case and we now outline areas

in which useful tests can be performed to give a

meaningful result that when coupled with the front end

testing using appropriate fixed test suites will give a high

overall confidence in the results of testing.

3.1 Can fixed test suites do useful code
generator testing at all?

From section 2 we can see that it is not easy to devise

a fixed test suite to exercise an optimising code generator

either strenuously or extensively. Nevertheless, some

kinds of behaviour such as register allocation and in

particular the handling of arithmetic at boundary values,

can be reasonably exercised by a fixed test suite. As of

2020 The SolidSands SuperTest test suite contains

comprehensive tests – in its the depth suite - that do

precisely that. This does help considerably as this is a

common problem area. Nevertheless, while significant,

this covers only a small part of what an aggressively

optimising compiler might attempt.

3.2 Is there any hope for systematic cover‐
age strategies?

The near absence of prescriptive requirements (other

than for arithmetic) in the C standard leaves a compiler

tester with little basis for determining suitable coverage

domains for code generator testing. Here, of course, we

mean and independent third-party tester who has no

privileged access to technical information on the

compiler’s internal design. Note this is the design not

the source code. Compiler design is closer to discreet

mathematics than programming.

Compiler developers are in a better position but even

they are hampered by the sheer complexity of code

generation and optimisation and the consequent size of

even theoretically possible coverage domains. Given the

number of compiler switches and the number of possible

patterns of source code construct usage, the number of

combinations is infinite for all practical purposes. This

remains the case even for C subset compiler targeted on

RISC CPUs with limited instruction sets. In practice,

therefore, it is fair to say that the scope for using

systematic test coverage strategies remains limited.

3.3 Where does that leaves us with prac‐
tical testing options?

With limited areas for using fixed test suites and

combinatorial explosion arising from interacting

optimisations, there is in currently only one practical

option for strenuous exercise of code generators in

independent third-party testing. That option is to use

pseudo-randomly generated stress test programs. In

adopting this kind of test strategy, we are effectively

abandoning any attempt at getting systematically

justified positive conclusions from testing.

If we cannot get fine-grained veridical testing with

fixed test suites, we simply generate correct but

convoluted programs in an attempt to trip up the

compiler’s back end. Early steps in this field were taken

by Brian Wichmann, and his colleagues, at the National

Physical Laboratory in the UK.[WiDa1989]. Theywrote a

pseudorandom stress test generator for Ada compilers.

Wichmann’s approach was subsequently applied to C

compilers by John Regehr and his colleagues at the

University of Utah, who produced the now well-known

CSmith stress test generator. [XYER2011].

3.4 How do we exploit stress testing?

Ideally we would like to have fixed test suites that

provide good tests of optimising code generators but just

a few examples suffice to show us that such test suites

may be unmanageable in both size and complexity. This

leaves us with pseudo-random stress testing as the only

practical alternative. It also means that the objectives of

testing change.

Experience shows that stress testing is very good at

finding obscure errors in code generators but it does not

provide us with systematic coverage domains. Since,

however, little testing of code generators can be made

traceable to the C standard, this is not of pressing

concern and we may as well abandon it as a

desideratum. Hence stress testing is not well suited to

positive validation and will not increase our confidence

that the compiler under test actually performs as it

should. What it will do, however, is go all out to break

the compiler.

Of course, one may then ask what use it is to a

developer if a compiler passes fixed validations tests

with flying colours and then collapses ignominiously in

stress tests. The answer is that stress testing is

complementary to testing using fixed validation suites.

We run a fixed validation suite as a screen for obvious

errors. We use stress testing to give ourselves a sporting

chance of identifying and avoiding areas of code

generation that may contain infrequently encountered

bugs.

4 Practical independent testing

If, for a given project, an assessment body requires

independent, third-party testing of a compiler, then this

should certainly include use of an extensive fixed test

suite. If use of compiler optimisations is unavoidable,

then the testing should ideally also include targeted use

of pseudo-random stress tests. Done properly, validation

plus stress testing should provide the developer with the

following documents:

• a validation report based on testing with one or

more fixed test suites, and

• a report on the results of stress testing.

Compiler
Validation 7

Compiler
Validation 7

10 11library.phaedsys.com library.phaedsys.com

These reports have to be separate because they are

doing different kinds of testing. The expectation is that

the fixed test suite will demonstrate compliance with the

language standard under the options the developer is

using for the project. It would also be surprising if stress

testing did not throw up several errors. The report on

validation with the fixed suite should therefore

(assuming sufficient tests have been passed) certify that

testing under the nominated options has produced

results such that the compiler is deemed to comply with

the language standard. No such conclusion, however, is

likely to be appropriate for the report on stress testing.

Generally there will have to be some recommended

measures for avoiding the areas of the compiler that

exhibit bugs. This necessitates careful planning of

testing. In particular it is advisable to do stress testing

before testing with a fixed validation suite.

4.1 Finding suitable compiler options
.

It is easy to see why stress testing, when done at all,

should be done first. Initially one stress tests the compiler

under the options intended to be used for the

application. Then if stress testing finds error, the chosen

options may be changed to see whether different options

avoid the error. If such options can be found, then fixed

testing can be done under those options with the result

that both fixed and stress testing will, typically, show the

compiler to behave reasonably under those options. This

way the developer gets a third-party test report that not

only demonstrates compliance under a fixed test suite

but also shows that the developer has taken steps to

avoid compiler errors that a fixed test suite cannot find.

4.2 When suitable options cannot be
found

Apseudorandom stress test contains very convoluted

code intended to push the compiler to and beyond its

limits. Typically, it is only a small part of the test that

actually elicits the observed error. Therefore, a usable

stress test generator must also offer facilities to prune a

test that has found an error. The process of pruning has

been outlined in an earlier paper in this series:On-Target

Stress Testing of C Cross Compilers Here we need to

consider what to dowhen the code that causes the error

has been isolated.

It may be that there is no set of compiler options that

eliminates the error. In this case the developer has to

find a workaround to avoid the error. At this point the

origin of the error has to be tracked down and the

problem should be referred to the compiler developer’s

technical support. What the compiler user then needs

from them is details of any available workarounds,

which could be anything from avoiding particular

source language constructs to, in extremis, scanning

generated code to find signatures of erroneous

compilation - an expedient that is far from unknown.

Once a robust workaround has been found, this may be

documented and included in the stress testing report.

4.3 When suitable options cannot be
found

The worst case in stress testing is when it finds an

error for which there is no viable workaround and the

compiler developer cannot correct the problem quickly.

If this happens, it’s time to think about switching to a

different compiler. Though that may be a nuisance, it is

probably better than persevering with a demonstrably

flawed compiler. Independent testing will then have

done its job by identifying that a proposed compiler

was not fit for the originally envisaged purpose.

This situation has occurred in the wild where a

compiler was written to the MCU specification but the

initial shipments of the MCU did not meet its own

specification and the compiled code did not work.

There was then a discussion between the compiler

company, the chip-maker and a major customer. In that

case the compiler, for that customer, was patched and

the other early release MCU customers notified. The

MCU hardware was corrected and the original version

of the compiler worked for all other non-early release.

Such circumstances are actually more common than

compiler users might suppose.

4.4 What an independent assessor may
look for.

In the current climate of 2021, independent assessors

are most likely to look only for validation testing with a

fixed test suite – but this is changing with the availability

of safety-rated dual-core lockstep micro-controllers.

When robust hardware self-checking is available, the

area at greatest risk of common-mode failure is the

software itself and cautious independent assessors may

look not only for traditional testing with fixed validation

suites but also the wider testing that a stress test

generation tool provides. This, however, remains

relatively new ground for independent assessors. In the

immediate short term, they are likely to decide on a case-

by-case basis what an appropriate testing regime is and

what, if stress testing is used, constitutes a suitable

response to a stress test failure.

5 Conclusion

5.1 In the short term

In the present state of the art, there are no entirely

satisfactoryways of performing independent, strenuous,

and traceable testing of C compiler code generators -

particularly those of aggressively optimising compilers.

This situation is not likely to change with more powerful

test hosts nor with more capable micro-controllers.

Ultimately the problem lies in language standards,

most of which state hardly any requirements for how

back ends in general and optimisers in particular should

perform. This problem is almost certainly going to

persist until it becomes the norm to give mathematically

formal semantics in language standards and to specify in

mathematical terms what invariants optimisers should

preserve. For the moment, independent testers are stuck

with one static test suite (SuperTest) that does address

some of the problems and a pseudo-random stress tester

(Csmith) that aggressively stress code generators. That

combination gives the least bad option for back-end

testing. It’s not ideal for developers of the most critical

systems but can at least help to steer them clear of some

aspects of negligence.

Regardless of the compiler testing regime used, there

still has to be testing of the binary actually produced for

a project. This kind of testing is, thankfully, well

supported by a wide range of commercial software tools

that can perform stringent dynamic analysis of testing

both at host/source and target/object level. This

includes tools like stack analysers and timing tools. Also

In Circuit Debuggers coupled with unit testing tools that

can run functional tests on the target.

5.2 Future prospects

It is not all bad news, however. Research to develop

verifying compilers is under way in both academic and

industrial laboratories, for example the CompCert

compiler from AbsInt [CompCert]. Once it is

demonstrated that industrial-strength verified compilers

for C are feasible, the landscape could change

dramatically. Such compilers wouldmake it significantly

easier to develop traceable tests for code generators and

optimisers and weaken the current dependence on

pseudo-randommethods.

On the other hand, the record of C’s development to

date does not exactly give cause for optimism. If the C

standard continues to give wide discretion for

optimisation without prescribing soundly based

semantics, it will be very hard to develop robust,

traceable back-end tests. The choice of languages and

compilers that developers might then have will be down

to what regulatory assessors deem acceptable. Nothing

stays still for very long in systems engineering and in the

long run a programming language whose standard

eschews precisely specified requirements is not

necessarily guaranteed continuing popularity.

5.3 The pragmatist’s approach

Technical constraints in a field are rarely a good

reason to ignore it. Though currently stress testing is

limited in its traceability, it remains an exceptionally

effective means of identifying flaws in compiler code

generators. As such it is a well-proven adjunct to

conventional validation testing. It is far better to know

Compiler
Validation 7

Compiler
Validation 7

12 13library.phaedsys.com library.phaedsys.com

about compiler bugs that to use a compiler in total

ignorance of them.

Owing to their complexity and their large numbers of

possible options, compilers will continue to contain

bugs. For the foreseeable future those bugs will continue

to congregate in code generators and optimisers. When a

regulatory assessor requires it, stress testing has a well-

earned place in the compiler tester’s toolkit. Like any

tool, it needs to used by some one with a solid

understanding of compilers and stress testing in a

laboratory environment. Doing this properly is not a job

for the average software engineer. Also some level of

separation from the production project will be required.

An independent compiler tester will know this and will

be able to advise developers accordingly

References

[CompCert] http://www.absint.com/compcert/

index.htm.

[EEJR2008] Volatiles Are Miscompiled, and What to

Do about It, Eric Eide & John RegehrUniversity of Utah,

School of Computing, 2008

[WiDa1989] Wichmann, B. A. and Davies, M,

Experience with a compiler testing tool, Report DITC

139/89, National Physical Laboratory, UK, March 1989.

[XYER2011] Xuejun Yang, Yang Chen, Eric Eide, John

Regehr, Finding and understanding bugs in C compilers,

ACM SIGPLANNotices, Vol 46, Iss. 6, June 2011.

The following that were referenced above are part of

the Compiler Validation series of documents and can be

found here

h t t p : //www.pha ed sy s . c om/s t anda rd s/

compilervalidation/index.html

C Compiler Validation for Embedded Targets

Repeatability and Reproducibility:Why testers sweat the

Compiler
Validation 7

The Art in Embedded Systems
comes through Engineering discipline.

Testing Code Generators:
A Dark Art

First edition January 2022

© Copyright Olwen Morgan & Chris Hills The right of

Olwen Morgan & Chris A Hills to be identified as the

authors of this work has been asserted by them in

accordance with the Copyright, Designs and

Patents Act 1988.

Contact the authors at:
info@phaedsys.com

Phaedrus Systems Library
The Phaedrus Systems Library is a collection of useful

technical documents on development. This includes

project management, requirements management, design

methods, integrating tools to IDE’s, the use of debuggers,

coding tricks and tips. The Library also includes the

QuEST series.

Copies of this paper (and subsequent versions) with

the associated files, will be available with other members

of the Library, at:

http://library.phaedsys.com

Compiler
Validation 7

