
MISRA C:2012
Workshop

Device-Developer

Conference

May 2013

First Edition

 by

Eur Ing Chris Hills BSc (Hons),

C. Eng., MIET, MBCS, FRGS, FRSA

The Art in Embedded Systems
comes through Engineering discipline.

MISRA C:2012
Workshop

MISRA C:2012
Workshop

2library.phaedsys.com

For a lot of you MISRA-C will not make a lot of

difference to the project overall. If misused it could

actually make things worse.

Unfortunately many spend more time misusing

MISRA-C than using it properly. Once you understand

what MISRA-C is and, more importantly, where it fits in

the process the rest will fall into place. Then MISRA-C

might actually save your project.

MISRA C:2012
Workshop

3 library.phaedsys.com

MISRA-C:2012 is NOT a silver bullet. It is not a magic

answer.

In fact there are no magic answers unless you live in

fairy land or bring your fantasy role-playing games to

work. There are far to many who see various tools or

methods as The Answer.

As with all tools and methods it is how the tools,

methods and processes are used and, more to the point,

how they are used in relation to the other tools and the

process in general. See Books Mythical Man Month on

next page.

There are no easy answers other than doing it

properly.

MISRA C:2012
Workshop

4library.phaedsys.com

This is a seminal book on project management.

The Mythical Man Month says that if it takes 1 man 12

months to do something it does NOT mean that four men

can do it in three months. Actually adding people can

even extend the time.

Life is more complex than simply dividing peopleinto

months, but surprisingly not that much more complex

and most of the rules are well understood. This is

certainly the case in other disciplines, if you bother to

look for them.

The big problem is usually you add more manpower

when it is far too late. The damage has been done and the

additional people are fire fighting. The answer is to put

resources in earlier so you don’t get the fire in the first

place. The earlier you add the resources Adding more

resources earlier, though, will still add up to a lot fewer

resources than are usually required later to fire fight.

Mythical Man Month ISBN-13: 978-0201835953

Brooks web site

http://www.cs.unc.edu/~brooks/

http://en.wikipedia.org/wiki/The_

Mythical_Man-Month

http://javatroopers.com/Mythical_Man_

Month.html

Mythical Man Month Chapter 2:

http://www.cs.virginia.edu/~evans/

greatworks/mythical.pdf

MISRA C:2012
Workshop

5 library.phaedsys.com

In many cases requiring MISRA-C conformance is

like handing this man a plaster and saying “there there!”

In fact that is what many people do. They don’t

address the principal problems. More to the point they

look at a few details, normally the MISRA-C headline

rules rather than the whole process.

Worse still, they think that by using the Magic Plaster

of MISRA-C this man will recover and be dancing with

the girl of his dreams in 2 days time aas in a Hollywood

film and their software project will equally make a

miraculous recovery. Life just isn’t like that.

The big problem is the false sense of security people

get by using various talisman. In this case applying a

plaster and thinking all is well means that this patient

will be DEAD ON ARRIVAL.

As we will go on to show using MISRA-C

inappropriately and/or on it’s own and thinking “all is

well” may well mean the project never makes it to the

launch. In some serious cases the company may not

make it to the next project launch.

One thing you can’t do, as one company I know

tried to do: buy a MISRA-C checker and run that over

the project with the intent of making the code “MISRA

Compliant” without reading MISRA-C or configuring

the tool.

The problem is, that to make code MISRA Compliant

you actually have to have a copy of MISRA-C, read it and

then decide which rules you will implement and which

deviate, then configure the *static analyser* you are using

BEFORE you run a MISRA-C checker over the code.

MISRA C:2012
Workshop

6library.phaedsys.com

This disclaimer in MISRA-C:2004, and less

prominently in MISRA C:2012, should be printed as a

poster on the office wall of the development team. This

is one of the pages at the end of this document, that may

be printed as posters so that you can do this.

Without care, thought, discipline and careful

implementation, nothing is automatic and easy. Even

the easy and automatic things need to be thought about

and understood before being carefully implemented and

properly used. You can automate things incorrectly.

Indeed I have seen fast memory checkers where,

because the memory write and read was not declared as

a “volatile” variable, it had been optimised out and so the

memory test did not write or read from memory!

The point is no one thing will guarantee error free,

robust, code or indeed a robust or error free system…..

Embedded software rarely exists on it’s own. It is part

of a system that does something. As with most things

you have to look at the overall system which should be

greater than the sum of its parts.

MISRA C:2012
Workshop

7 library.phaedsys.com

Verification and Validation - that well known double

act. Everyone goes on about validation, testing etc. - static

analysis, dynamic analysis, unit test etc - they can save a

lot of time and effort. In fact they are essential but not on

their own.

Static and Dynamic analysis can prove the code and

functionality are correct, but NOTE - correct code and

correct functionality are two different things.

Static analysis alone can remove many bugs and

misuses of C but it cannot prove correct functionality.

Unit test can prove the low level design correct, but

not find many/any bugs in the code and not find if the

implementation meets the overall system requirements.

So you need both static and dynamic analysis in that

order.

No matter how good or validated the test tools are,

unless you have a solid requirements specification and

a reviewed design that does relate to the requirements,

you don’t really know what you are validating. The code

may be correct in itself and “work” but it may not be

doing what the what the end user wants.

Verification: Are the requirements correct?

Validation: Static Is the code correct?

Validation: Dynamic does the unit/system function

to the requirements?

MISRA C:2012
Workshop

8library.phaedsys.com

This is the classic V-model. It works. Or rather it works

if used correctly, which is the caveat for all processes!

There are many safety critical systems running today

saving lives or stopping lives lost, all developed using

the V model. There are many more non-critical systems

also running, that just quietly get on and work, that were

developed using the V model. The crucial point is the V

model is conceptual and shows information flow. The

User Requirements at the top left (the start) also provide

the Acceptance Tests (at the top right, the end); both

of which should be completed before a line of code has

been written.

The problem in this model (or any model) are the

interfaces - the initial gap between Tender Management

and the Requirements - the input to the V that converts a

fluffy wish list into hard requirements.

The next interface is the most crucial It is the gap

between the pink and blue boxes. The output from the

requirements phase is a paper exercise and costs at most

a few expense account lunches or buffets when talking

to the customers.

When you enter the blue section of design and

construction real time, effort and in many cases actual

hardware costs start to be non recoverable. Whilst many

of you are working in software for embedded systems

there is also hardware. The hardware team are actually

making physical things that cost money. It is far cheaper

to double the time in the requirements phase than start

the illusion of progress by writing code and making

hardware.

There is the so called “Spin cycle” in the requirements

and specification phase. This is where proof of concept

and other ideas can be run round. However none of

the hardware or software created here should be used

in the main development process. (Apart, that is, from

3rd party and other libraries that have already been fully

tested and validated.)

Agile is fine for sub contractors on cost plus contracts.

You can keep a 9-month contract running for years with

continual changes in requirements. It is one of the least

cost effective ways of working there is if you are paying

the development costs.

MISRA C:2012
Workshop

9 library.phaedsys.com

All too often the result is the requirements phase

is skimped in the illusion of progress. Then the

requirements phase throws out he diagram above. “I can

draw it. Why can’t you build it?” The common problem

here is that:

The requirements phase [TICK}

Has all the documentation [TICK]

All completed [TICK]

Smug look on face of requirements team [TICK]

Engineers told to “get on with it” [TICK]

Failure is fault of Engineering Team [TICK]

Then the Engineers just “get on with it” and several

weeks, or months, later problems appear with getting

the code to work. Assumptions are made to fill in or

paper over cracks. This takes time and effort. Deadlines

slip. Pressure mounts. Hacks are used to speed things

up. And…. You get the picture.

This is even worse when the actual development is

out sourced to a different culture, whether in the same

country or another.

So what appears to be a problem in the blue

implementation phases was in fact generated in the

pink requirements and test phase…

Incidentally the drawing would probably pass static

analysis and MISRA-C as all the lines are of the correct

weight and colour. All the lines are straight or curved

as they should be. All lines are complete and are

continuous or end at a junction.

This might even pass unit test. Three round ends at

one end and a bar at the other…. Dynamic unit tests

are micro tests.

Whist software people accept this sort of thing can

you imagine what a mechanical engineer would say if

presented with incomplete drawings?

MISRA C:2012
Workshop

10library.phaedsys.com

So the output from the pink box, which is the input

to the blue box, is the most crucial point. When you try

building the item, things don’t fit. So you bend them

to fit. Then it is YOUR FAULT. What should you do?

Question the requirements of course!

Get confirmation IN WRITING from who ever

is responsible. This shift of responsibility back up

the process will start to ensure you get accurate

requirements.

It is NOT progress if you start developing the wrong

thing. Historically successful projects spend longer in the

requirements phase than projects that fail! Typically they

spend over 50% of the project time in the requirements

phase.

Contact Phaedrus Systems for the presentation:

Requirements are Required. (email MISRA@phaedsys.

com)

The other thing that is often missed is that the

REQUIREMENTS PHASE GENERATES THE

SYSTEM TESTS

So far from throwing some ideas at the implementation

team and running, the requirements team are also

specifying the tests so if there are gaps in the requirements

there will be gaps in the tests.

You can’t test for things that were not required. So

where in many projects you get hacks, patches and

then delays at the final testing while bug hunting and

fixing things, it would have been better to spend a week

or two more in the requirements phase. This would have

removed the problems before they happened, shortening

the overall project time-table.

MISRA C:2012
Workshop

11 library.phaedsys.com

Return On Investment (ROI) per 100 (USD/GBP/Yen)

invested in a project. Source: Programming Research.

This chart shows that Formal Design Inspections pay

off the most followed by Formal Code Inspections.

BUT, don’t forget the formal code inspections assume

that the design is right!

These two score the highest and second highest ROI

in all categories. In fact these two combined have a higher

ROI than all the rest put together. Red numbers are best

return in each criteria and blue are second best return.

Design inspections pay off faster because if you

get the design wrong you are wasting time and effort

(money) on building the wrong thing in the next stages.

 With coding the return is higher the further from

coding you get as the costs of fixing a coding bug

escalate dramatically the further from the coding phase.

A bug that would cost 1 (USD/GBP/YEN etc.) if fixed in

the coding phase (eg though static analysis) could cost

50,000 (USD/GBP/YEN etc.) if it escaped into the field.

I have a real world case where that happened. The

company in question had turned down an “expensive”

tool solution costing 20K during development. When

the tool was demonstrated again, after the problem had

appeared in the field and had been fixed, the tool found

the “50K bug” in about 15 minutes.

The tool also uncovered another 5 problems, of

similar magnitude, that were still in the code that was in

the field waiting for the dice to fall and cause a problem.

Look at recent events (spring 2013) with the 787

Dreamliner and you can see the cost of fixing the bug

may pale into insignificance compared to other longer

term indirect costs.

MISRA C:2012
Workshop

12library.phaedsys.com

Here are three samples for schedules and costs: high

quality, average, and poor quality. All three are 1000

function points in size. Costs are based on $10,000 per

month.

The high quality case used static analysis, inspections,

and formal testing.

The average quality case used static analysis and

quasi formal testing

The poor quality case used only informal testing.

thus cheaper to start.

This book has all the facts and figures to back up

these assertions. One of the authors has been involved as

an expert witness in many legal cases and had access to

the data, true costs etc. (And not just the stories that have

appeared in the press.

A useful reference book to have as it is not from a tool

vendor and thus is an independent authority. See this

Short Video by Capers Jones

http://www.youtube.com/watch?v=zmrqsQxv_yo

The slide on the following page is at 2:40 into the video

Also worth listening to is a Podcast: Economics of

Software Quality - An Interview with Capers Jones

The interviewer is Rex Black (also a well known safety

systems expert in his own right)

Part 1

http://www.youtube.com/watch?v=zo8JI9MVxQg

Part 2

http://www.youtube.com/watch?v=FLDgRtzq-Cc

http://sqgne.org/presentations/2011-12/Jones-

Sep-2011.pdf

MISRA C:2012
Workshop

13 library.phaedsys.com

This is the slide at 2 min 40 seconds in to the

video by Capers Jones at http://www.youtube.com/

watch?v=zmrqsQxv_yo

There are similar graphs, from many others, who

have done similar work over the last 50 years. As the

pool of information and examples grows the numbers

used in the reviews are getting larger and the statistics

more accurate. In the past, there were hundreds of

examples to draw, from now there are tens of thousands

and they all confirm the studies.

The “cheap route” costs less to get started. However

it then gets VERY expensive from the coding stage. The

problem is that the costs incurred from and after the

coding stage start to become exponential. And they have

no time limit. Bugs in the field will come back to haunt

you. Even if the device is obsolete, or no longer current,

its failure still damages the company’s reputation even if

you don’t have to fix the bug.

Engineering route is more expensive to start but

costs a lot less in the longer term. Also, by finishing the

project on time (with lower costs) you can start receiving

an income from sales sooner, and also start the next

project.

MISRA C:2012
Workshop

14library.phaedsys.com

So, after spending time on requirements and design,

with formal reviews for both, we get to the coding phase:

We will start with Style Guides.

All the code needs to look the same. This helps

readability. If the code is uniform things that are wrong

STAND OUT.

 A uniform style is psychologically good as the brain

is not spending effort on working out what is there but

can actually look at what the code is doing.

A short demonstration of this follows.

MISRA C:2012
Workshop

15 library.phaedsys.com

The text on the slide above was sent to me, many

years ago by one of my team, exactly as formatted. He

had been assisting on a code review for another team.

I normally give 10 seconds for the audience to work

it out. 99.99% can’t do it in 10 or less seconds which is

the point…

NOTE if you can work it out in 10 seconds you are not

normal and should not be doing either the style guide or

the coding standard!

NEXT SLIDE (before they work it out what it says)

MISRA C:2012
Workshop

16library.phaedsys.com

This is the same characters in two different styles!

Again I give about 10 seconds for each (before people

can work it out! J) What the text actually says is:

The other team regard source code
layout as an art form.

The problem was that it took all day to work out

what the code was saying due to the multiplicity

of styles. It was very inefficient. Also errors are not

obvious… I think there is a different error in each of the

three examples.

With one style across the whole project and

preferably the whole company, less time is wasted on

having to sub-consciously “translate” the code as you

read it. Software engineers should work to the house

style and worry about the more important things -

problem solving and algorithms.

Most compiler IDE’s will work with templates for

code. These cover things such as function header

blocks, constructs for switch statements, structures,

“for” loops etc, and can be used across the company.

There may also be a need for project specific templates.

These should be the same as the company wide

versions but with the project specific things added.

For example, document reference numbers.

MISRA C:2012
Workshop

17 library.phaedsys.com

A Style Guide is a MUST! Consistency across the

project, and preferably the company, makes sense

and removes stress. It also makes code reviews far

more effective. Many companies mix the coding

standard and the style guide into one document.

MISRA-C is a coding standard but, before covering

that, I want to look at static analysis.

C is a very flexible language. It is not strongly

typed. You can stuff a “long long” into a “char” quite

legally, silently losing bytes of data. You can put a

negative signed variable in to an unsigned variable,

both losing the sign and changing the value if it was

negative.

A compiler is a language translator and you will

note it is referred to as a “translator” in MISRA-C

(and in ISO language standards).

A compiler will pick up syntactical errors but not

semantic errors. Even compilers that claim to do

semantics are very lightweight when it comes to it.

Those that claim to do static analysis are also somewhat

suspect, as static analysis requires an engine that is

more complex than a compiler.

MISRA C:2012
Workshop

18library.phaedsys.com

The first static analyser for C (lint) was created, to

detect legal but suspicious constructs. According to

Dennis Ritchie, “A lot of legal C is dangerous.” He wrote

that in 1993. He was writing about the first lint program.

That was constructed in 1976, before they wrote the

seminal K&R book, the first language reference for C, in

1978. Over a decade before ISO C or ANSI-C there were

problems with C being misused.

Also programmers like to try and prove how clever

they are with C. Brian Kernighan had a comment

on that which comes up later in the presentation. It

seems that lint (static analysis) was intended to be part

of the standard C compiler chain and certainly was in

compilers running on UNIX..

The problem is that it never survived on the leap to

the PC development platforms. Many of us did use lint

in the 80’s but most programmers never started the habit

and it seems universities never pushed it either.

The culture of “it compiles so it must be OK!” started

to prevail.

Since the original lint, static analysers have developed.

At the high end, they are very powerful code analysers

that can enforce local coding standards as well as

rigorously analyse code with configurations for many

dialects of C. In the embedded world most compilers

have extensions for the hardware architecture, specific

IO and registers.

Check the pedigree of any static analyser you intend

to use: static analysers are more complex than compilers

- they have far more to do.

The father of static analysis: http://en.wikipedia.org/

wiki/Stephen_C._Johnson

MISRA C:2012
Workshop

19 library.phaedsys.com

The K&R Team intended static analysis to be part for

the compile chain with the original lint. Static Analysis

saves Time (== MONEY) by finding bugs at the time you

write them. C is often called a “write only” language as

it is difficult to read later. So fixing bugs whilst you still

remember how and why you wrote the code is a good

idea..

Static Analysis warns about things a compiler most

certainly will not and should not warn about.

Most programmers are nothing like as clever as they

think they are and the one sitting next to you certainly

isn’t! You really don’t want to have to debug their code

“later” when the deadlines are looking tight and you

want to get home for the match.

A compiler does NOT warn of the very many legal

but highly dangerous constructs that often (if not always)

cause problems later.

Whilst many, if not all, of the dangerous features are

useful once in a blue moon, you don’t want, or need most

of them most of the time. More to the point you need

to know when they have been used, usually accidentally

or for the wrong reasons. Hence static analysis and

MISRA-C

Many studies show static analysis works and SAVES

TIME AND MONEY. Most static analysis tools pay

for themselves the first time they are run by finding

simple bugs that, if they escaped into the wild, could

cost several times the cost of the static analyser. That

includes non-safety related projects.

MISRA C:2012
Workshop

20library.phaedsys.com

There is no point in compiling syntactically legal code

that is dangerous. All you have compiled is code that

may have bugs and may or may not behave correctly.

Therefore run the static analysis tool OFTEN as

you write code. This should also check for MISRA-C

violations. When you have corrected the errors and

warnings (or deviated them and adjusted the static

analysis configuration) take the next step.

You should set the compiler to the highest warning

level and then compile. There should be no compile

errors or warnings. You may still get linker errors and

warnings. These linker errors will be outside the scope

of the static analysis.

If there are compiler errors or warnings this means

that, no matter how theoretically correct the source

code, the compiler that is actually producing the binary

has a problem and the binary is suspect. Therefore ALL

compiler errors and warnings must be investigated and

resolved.

At this point the code is as correct as it can be statically.

The question is, “Did you program it to the specification?”

So move on to Unit Testing, which is where you test to

MISRA C:2012
Workshop

21 library.phaedsys.com

This is the lower half of the V model in more detail.

Design specs should give unit test cases, which go to

unit test. This means that you should have the test cases

BEFORE you write the source code.

The next step is to write code to the Design

Specifications and the coding standard. Then, as

described in the previous slide, run the static analysis

and MISRA-C checking.

There is NO POINT in running MISRA-C checking

unless you have run static analysis. MISRA-C restricts a

subset of the C language. It is only a small part of

static analysis which typically finds 1500 problems

whereas MISRA-C has 143 additional Rules.

This will give you clean code.

Now compile the code, permitting no compiler errors

other than architecture specific or compiler specific

errors. Remove (actually resolve is a better word) all

compiler errors and warnings. The solutions will depend

on the problem.

NOTE. If you unit test before static analysis, you

proved nothing. When you statically test you will find

bugs. Fixing the code renders all the unit tests invalid.

So unit test before static analysis it is a complete waste

of time.

The same goes for compiling the code before static

analysis. When you have done the static analysis you

will have to compile again anyway.

MISRA C:2012
Workshop

22library.phaedsys.com

It is worth reiterating that MISRA-C should be used

as part of static analysis. You also need a company

coding standard and the static analyser can enforce this

too. The analysis tool should be able to enforce both.

Static analysis is the only cost effective, time effective

and reliable way to enforce a coding standard and

MISRA-C. The big point is that MISRA-C is an addition

to static analysis. You need static analysis for C. If

you are not doing it there is no point in bothering with

MISRA-C None at all.

Not doing static analysis (and then adding MISRA-C

to it) is commercial suicide.

MISRA C:2012
Workshop

23 library.phaedsys.com

There are very many studies that show how

important static analysis is. This one, from 1995 showed,

that Improved/Formal code inspection shortened a

project by 30 %. This assumes a style guide so all the

code is uniform.

Automating this phase with static analysis saves

even more time. With static analysis enforcing MISRA-C

automatically, the code reviews are looking only at the

code structure. You can “see the wood from the trees.”

Because the code review is no longer “bug hunting” in

the code, reviews are far more productive and generally

less fraught.

The same can be said for unit testing. With this

phase also automated you are testing more (against the

specifications) and bug hunting less. This gives a far

higher degree of confidence in the system and again

saves a lot of time. Automated unit testing systems also

normally pay for themselves very quickly.

MISRA C:2012
Workshop

24library.phaedsys.com

Style covered, static analysis covered. Any one

not using a style guide and static analysis may

as well not bother with MISRA-C and coding

standard

MISRA-C should be part of the company coding

standard and enforced at the static analysis phase.

The company coding standard will normally be a

mix of coding style and language subset. Which

style it is does not matter much, as long as it is

consistent. Style guides have improved over the

35 years since K&R’s was written. A lot has been

learnt since then and the language has changed. So

I would not recommend the K&R style personally.

Now we move on to MISRA-C.

MISRA C:2012
Workshop

25 library.phaedsys.com

The first MISRA-C in 1998 was the last in a series

of MISRA-Guidelines on software development for the

UK Automotive industry. The guidelines were a local

forerunner of 61508/26262.

 MISRA-C was almost an afterthought as “report

9” However Programming Research (who had a hand

in MISRA-C 1998) LDRA and Phaedrus Systems CTO

pushed MISRA-C to a wider audience. See my initial

review written in February 1998 http://www.phaedsys.

demon.co.uk/chris/misra-c/misrac.htm As the review

says this guide is suitable for all embedded C not just

automotive.

In 2001 a MISRA-C working group was formed to

start the next version. The team for C2 was only 50%

automotive and the title changed to “Critical Systems” to

reflect this and also to reflect the fact that in the 5 years

since the release of C1 it become used way outside the

automotive industry.

This trend continued apace and MISRA-C:2004

has been used as the basis of several major non-

automotive coding standards, including the US

Joint Strike Fighter (JSF) C++ coding standard and

numerous company coding standards.

It is a fairly safe bet to say, that there probably

isn’t a single industry that is not using MISRA-C

somewhere. This includes nuclear, rail, medical,

marine, oil and gas, aerospace, defence etc. In fact

the biggest group on the MISRA-C:2012 team is

defence and aerospace: automotive now makes up

only 10% of the C3 and current MISRA-C team.

With a team of 10 from diverse industries, we have

over 250 years experience, mainly on high integrity

and safety related systems in the field. The tool

vendors on the team see hundreds if not thousands

of diverse projects. Add to this we also get feedback

from the MISRA forum..

MISRA C:2012
Workshop

26library.phaedsys.com

This slide usually raises some smiles because the

majority of people don’t realise that like MISRA-C:2004

The Karma Sutra has 7 parts. The only part most people

know of is the one part that that contains sex. (part 2)

They have never heard of the other 6 parts. In the same

way with MISRA-C: 98 and 04 most people only seem

to read the rules and skip the other 6 chapters. These

other chapters are the most important parts! They tell

you how to implement the rules.

MISRA C:2012 has 9 (NINE) chapters and many

appendices. However it is now even more true that you

need to read all the parts of MISRA-C except the rules

before you start to do anything with MISRA-C.

To implement MISRA C you need to understand it,

so you need to read ALL of it. Not just the rules. This

time around, MISRA-C:2012, you WILL have to read

all of it or you will not be able to claim any sort of

MISRA compliance.

MISRA C:2012
Workshop

27 library.phaedsys.com

What’s new on MISRA-C:2012? A new structure:

We now have Rules and Directives. The directives have

the same weight as the rules but are rules that can not be

directly taken from the source code alone. Also there is

an additional MANDATORY category.

We have put in a lot more supporting material which

is why MISRA-C is almost twice the size of the last

version with only a 10% increase in the number of rules.

There is a lot of material that we always intended to

release as an additional document for MISRA-C:2004,

discussing essential and underlying types. This is

integer promotion on steroids! This section was written

by Paul Burden, one of the longest serving MISRA

team members and THE authority on underlying and

essential types. Paul works for Programming Research

and you should contact them for more information.

MISRA C:2012
Workshop

28library.phaedsys.com

Rules and Directives. The reason for splitting them

is that rules apply only to source code and most (about

80%) can be statically determined.

The Directives have the same weight as the rules

but cover matters that you can not discern just from

the source code. For example, rule 4.2 requires that all

usage of assembly language should be documented. The

directives are in no way lower or lesser than the rules.

There is still the compliance matrix which is one of

those things that has been a part of the guidelines since

MISRA-C:1998 and has been ignored as it is in the first

6 chapters However in order to do MISRA-C at almost

any level bar the informal you need a compliance matrix.

Deviation guidance is new BUT requires you have a

compliance matrix, which you will all have had if you

have done any MISRA-C enforcement....

We included some guidance on Deviation procedures

as many people asked for them.

There is more on Claiming MISRA-C compliance.

which also explains why you need a Deviation document

that requires a compliance Matrix……

There are no short cuts in MISRA-C:2012

MISRA C:2012
Workshop

29 library.phaedsys.com

MISRA-C 2012 has a modified rule structure. The

Headline Rules are now short and succinct, without all

the exclusions. (They were in danger of becoming 5 line

rules reading like the titles of academic papers.) These

are followed by the category for the rule including the

new “Mandatory” category.

The Analysis is new. This says, if the rule is

theoretically decidable or not, whether in a single file, or

across the project. About 80% are “decidable” in theory,

so any tool claiming 100% MISRA testing is being, to

put it kindly, enthusiastic. It should be possible to reach

nearly 90% decidable, if certain rules are not deviated.

We (the MISRA-C team) are currently (July 2013) looking

doing some work to identify how this can be achieved

and the rules concerned.

The “Applies To” is important. C90 compilers behave

differently to C99 compilers. Do you know which C you

use? (And did you know “ANSI-C” died in 1990 when it

was superseded by ISO9899:1990…) This also marks the

rules that applied to the MISRA-AC autocode documents.

The [optional] Amplification is the additional

explanation of the rule so we could have the short

headline rules. Which why now, more than ever, reading

just the headline rule is pointless.

The Rationale explains the thinking and the reasons

for the rule. This removes any excuses for following the

letter of the headline rule but ignoring the spirit of the

rule. There are no excuses any more.

The [optional] Exceptions again help make a

simplified headline rule and the exceptions listed do

not need to be deviated. These examples are illustrative

and not exhaustive. There will be other positives and

negatives we have not mentioned

Finally every rule has several illustrative positive and

negative examples.

MISRA C:2012
Workshop

30library.phaedsys.com

As you can see there is a lot more description and

explanation in MISRA-C:2012. If the truth be told over

the 8 years of development (or some 80 man years) we

made notes in our development system as to why we

were changing and adapting the rules for MISRA-C:2004

This is why you need to read all of MISRA-C and

not just the rules, let alone just the headline rules. The

overriding lesson is: Do not try to be clever! Do not try

and “beat the rule”

As Brian Kernighan said, “keep it simple” If you are

that clever you should be in debug and maintenance

otherwise no one will be able to debug your code. Over

the years I have found this to be true.

Programmers “being clever”generally have difficult-

to-read code and more time is spent de-cyphering the

code than hunting the bug.

I have on several occasions unravelled some

clever code to find a bug and in doing so, found

other un-reported bugs as well. When the code was

rewritten in a simple way it was obvious what the

code did and there was nowhere for the bugs to hide

MISRA C:2012
Workshop

31 library.phaedsys.com

There are 10 Mandatory rules. Only 10 out of 159

Rules and Directives.

 We actually started with about 30 mandatory rules

but people kept finding legitimate reasons to deviate

them. In the end we had 10…

So only 7% of MISRA-C:2012 rules will hold true 100%

of the time. This is why there are deviations… There are

not THAT many things that are universally true for C

because of architecture, extensions and restrictions, also

the nature of the project.

Unions, for example, we banned but expect those

doing communication streams to deviate them. This

is why you need a Compliance Matrix and Deviation

Guide.

MISRA C:2012
Workshop

32library.phaedsys.com

More explanation and 8 other chapters to read……

MISRA-C:2012 is NOT just a tick box. You have to

read, understand and apply “sensibly”

It is not a religion to be followed blindly. It is

Engineering Guidance but you have to be able to justify

your decisions.

MISRA C:2012
Workshop

33 library.phaedsys.com

The ultimate MISRA-C:2012 rule is Directive 3.1

(Required) As it is required you can deviate this

directive BUT in order to do so you have to show why

you do not need requirements. And why you do not have

to trace them to the code.

So, if you can come up with a good reason why

you wrote code you don’t have proper requirements to

write…

This rule is a game changer as it puts the responsibility

back on to the people enforcing MISRA-C in the

company. If they don’t deviate MISRA-C then you need

full sets of requirements and traceability traceability to

the code. This means that you can’t start writing code

unless the requirements are complete (and some one has

signed for them). Or, in the other case, if some one has

taken responsibility and signed for the deviation then

you can start writing code without full requirements.

That should get a few people thinking!

MISRA C:2012
Workshop

34library.phaedsys.com

This has not changed since MISRA-C1 in June 1998,

apart from the colours in the table! You list ALL the rules

and where they are checked. Some will appear in more

than one column. There will be an overlap between the

compiler and the static analyser, but the main MISRA-C

checker should be the static analyser.

There will also be a manual review column. Static

analysis and MISRA-C does not negate the need for a

formal code review and indeed some of the directives

require that one be done.

A Compliance matrix is easy to do in a spread

sheet, word processor or even formal Requirements

Management software. It does not matter how you do

one but YOU WILL NEED ONE. There will be at least

one entry against every rule including the deviated

rules. You will need a column for deviations. This is

where you put the reference for a deviation.

MISRA C:2012
Workshop

35 library.phaedsys.com

Deviations are something we are asked about a lot.

There are two classes of discussion. Firstly, “How do I

deviate,” which I will cover next. Secondly how to meet the

requirement for “100% MISRA-C no deviations[TICK].”

This is usually…. actually, always, imposed by people

who don’t understand what MISRA-C is or how to

implement it.

As mentioned there are only 6% of the MISRA-C rules

that are Mandatory.: That is rules that are applicable 100%

of the time. Therefore we hope that 99.9999% of MISRA-C

users will deviate the appropriate rules.

This is one of the places where MISRA-C can be

counter productive. When, for example, some manager

demands 100% compliance without realising he is

dangerously handicapping the project. The team

fight with the standard and resorts to all sorts of time

consuming, and in some cases dangerous, tricks to get

round the warnings from the code analysers.

They spend a lot of time getting hideous and less

efficient code.

A4 size Copies of this slide are available signed for

your manager’s office wall!

Deviations WILL be required.

MISRA C:2012
Workshop

36library.phaedsys.com

As a lot of people wanted an “approved” Deviation,

we have written a couple of pages on deviation with an

example above. However this is just a general example.

Remember, we are offering Engineering Guidance not

preaching a Religion, so modify the diagram and the

suggested methods to fit your processes. It really does

not matter what the form is or what looks like: it is the

function that is important. The person who wrote the

Deviation guidance worked for a large company in a

specific industry, which shows. So use it as an editable

template not a rigid form.

The overriding thing about a deviation is, does it

make sense to some one else in 6 weeks time? I always

say. “Go and ask your non-technical partner at home if

the deviation makes sense to them. If you can’t explain

it simply in plain English then how will your deviation

read to a board of enquiry or a jury in 6 years time?”

NOTE “neat”, “cool”, “Radical”, “dude”, “man”,

“wicked”, “ace” and “bro” were not cool, radical, neat or

wicked, man, the first time around in the 60’s 70’s, 80’s

etc and won’t work now especially to a jury of 60 year

old BCS or IET Charted Engineer Expert Witnesses.

So, seriously, simple plain English deviations for

reasons that really stand up. Hopefully they will not

need to stand up next to you in the dock in court!

MISRA C:2012
Workshop

37 library.phaedsys.com

So in a round up of MISRA-C 2012 the exemplar

suite will be made up of the examples pulled from the

standard. They are NOT repeat NOT a test suite as we

are some 50,000 tests short of a test suite.

The EXEMPLAR suite can not be used for testing

tools against each other. The tests were there to help

explain what we meant and for the team to test the rules

in compilers and static analyzers to help formulate the

rules..

For 99.9999% of MISRA-C users 100% MISRA-C

compliance is not going to be a Good Thing. Sensible

Engineering will require some deviations.

There fore you will need a deviation document. More

to the point you will have to have read and understood

the rule so you know why you are deviating and the

deviation you write needs to make sense to some one

outside your team a week after you wrote it.

In order to do MISRA-C you will need a compliance

matrix to show where each rule is being checked and

or deviated (and why) including a manual code review

phase.

MISRA C:2012
Workshop

38library.phaedsys.com

There is more to MISRA-C than the rules (and

directives) there is a LOT more guidance on

implementation of MISRA C.

The Vision and Background are nice but not essential

- read them if you are bored one day.

Chapters 5 and 6 are essential and you must read

these two parts if not any of the others.

Chapter 4 is also useful but I find Chapter 3 is

somewhat misguided in places. (And I said so at the

time.) I shall probably be writing a commentary on it at

some point

MISRA C:2012
Workshop

39 library.phaedsys.com

There are now notes on how to claim MISRA-C

Compliance for a project. Not for a company, but only

for an individual project.

You MUST have a completed compliance matrix

and deviation documents. They must match each other

and match the configuration of the MISRA-C checking

tools: which WILL be a static analyzer. Practically

speaking you can’t claim MISRA-C compliance without

one. Theoretically you could but it would take so much

time and manpower that is it not a commercial option.

You must of course adhere to the Mandatory rules (10

of them at the time of writing) if you are working to

MISRA-C:2012. And do make it clear which MISRA-C

you are working to. ‘98, ‘04 or ‘12.

Remember you may have to produce both the

compliance document and the deviation documents to

substantiate your claims so the deviations had better

be sound. Of course you will need complete traceability

between the requirements and the source code. That or

a fascinating deviation why not!

At the end of each year Phaedrus Systems will give

a prize to the best deviation of Directive 3.2 received in

the year. misra@phaedsys.com

MISRA C:2012
Workshop

40library.phaedsys.com

So MISRA-C or MISRA-C++ really only work well if

you have a full requirements specification and a complete

and reviewed design, so you know exactly what you are

building, and then use MISRA-C as an addition to the

static analysis phase.

Static analysis finds many problems and MISRA-C is

an additional set of rules and restrictions.

What you can’t do is impose MISRA-C at the end of a

project.. You have to start writing MISRA-C code at the

beginning. You can put MISRA-C on to legacy projects

but a file at a time and be careful. Some systems only

run because there are bugs in them. Cleaning up one

module might close the door on another faulty module

so that it now no longer works as it did or as it should.

MISRA C:2012
Workshop

41 library.phaedsys.com

So MISRA-C might save your project as part of a

properly implemented system. On its own it is jut one

more tool in the box. Like any other tool it can do more

harm than good if misused. If you have any questions

there are several places you can go for help:

For authoritative and definitive statements from the

MISRA-C Working Group got to www.misra-c.com/

forum

For general discussion on MISRA C and C++ there is

the LinkedIn forum “MISRA-C and C++” This is where

most of the MISRA-C team hang out.

Otherwise for general MISRA-C information, static

analysis, general SW Engineering and project control

information contact Phaedrus Systems

MISRA@Phaedsys.com

www.phaedsys.com

MISRA C:2012
Workshop

42library.phaedsys.com

MISRA C:2012
Workshop

43 library.phaedsys.com

The Art in Embedded Systems
comes through Engineering discipline.

MISRA C:2012
workshop

MISRA C:2012 Workshop
Device Developer
Conference
May 2013

First edition May 2013

© Copyright Chris A Hills 2013

The right of Chris A Hills to be identified as

the author of this work has been asserted by him

in accordance with the Copyright, Designs and

Patents Act 1988

Phaedrus Systems Library
The Phaedrus Systems Library is a collection of useful

technical documents on development. This includes

project management, integrating tools like PC-lint to

IDE’s, the use of debuggers, coding tricks and tips. The

Library also includes the QuEST series.

Copies of this paper (and subsequent versions) with

the associated files, will be available with other members

of the Library, at:

http://library.phaedsys.com

