

SQL or Navigational Database APIs:
Which Best Fits Embedded Systems?

Abstract: For embedded systems developers, the choice of database application

programming interfaces (APIs) often boils down to the high-level SQL language and Call

Level Interface, and navigational APIs integrated with C++ and other languages. Which

API is best? This paper examines the familiarity and ease-of-use often cited as benefits of

SQL. A sample application is implemented with SQL and then with a navigational API,

to explore the issues of programming ease, maintainability, determinism and learning

curve. Special attention is given to the significance of SQL optimizers in evaluating

database APIs.

McObject LLC
33309 1st Way South

 Suite A-208

 Federal Way, WA 98003

Phone: 425-888-8505

E-mail: info@phaedsys.com
www.phaedsys.com

mailto:info@phaedsys.com
http://http://www.phaedsys.com/principals/mcobject/index.html
chills
Typewritten Text

chills
Typewritten Text
Supplied by

chills
Typewritten Text

Copyright 2013, McObject LLC

Introduction

As embedded systems grow smarter, developers are turning to commercial

database management systems to support new, data-intensive features. In doing

so, developers confront a variety of database application programming interfaces

(API)—and must choose the right one for their projects.

One choice is SQL, a high-level language developed for business systems, which

has been extended into the embedded systems environment. Since its introduction

in the 1970s, SQL has gained popularity for its (to some extent) vendor

independence. SQL also offers a higher level of abstraction to programmers by

separating database access language from the physical database implementation.

Developers can also choose navigational APIs that are more closely integrated

with the third-generation programming languages, such as C and C++, used in

such projects. Many database vendors offer navigational APIs either alongside

SQL or as the sole interface for their database products. Clearly, these alternative

APIs serve a purpose, or address some needs, or they would not survive.

Intuitively, developers may sense that these APIs offer greater efficiency and

precision, due to their origin in powerful, widely used programming languages.

Which API to use? This paper examines two reasons application developers might

consider SQL for an embedded application. The first is familiarity, since SQL is

associated with some of the best-known Enterprise databases such as Oracle and

DB2. The second is the hope that development will be easier with higher-level

SQL. In the sections below, a sample application is implemented with SQL and

then with a navigational API, in order to explore the issues of programming ease,

maintainability, determinism, and learning curve.

SQL and Navigational APIs Defined

SQL is a “set” oriented language. In other words, it works with a set of result

rows. For example, a simple query, SELECT * FROM TABLE-A, will generate

a result set, or the set of rows matching the query criteria.

In contrast, navigational APIs work on one record at a time. A function in the

API is used to locate a record in the database, then another record, and another,

through a looping procedure. Application logic determines whether the current

row is a member of the set of interest. “Navigational” is a general term. In

practice, navigational APIs use a number of navigation methods (sequential,

indexed, or in the case of hierarchical DBMSs, pointer-based).

Comparison Application

To demonstrate the different programming techniques, consider a simple program

that audits Internet traffic, such as might be found in an intelligent network

infrastructure device (a caching device or firewall, for example) or a corporate

Web monitoring application. Requirements are as follows:

 Maintain a chronological record of URL visits

 Report all URLs visited

 Report URLs by User

 Report # accesses for specified URLs

Any given URL can be visited by one or more users, and any user can visit one or

more URLs. This creates a many-to-many relationship. For simplicity, we won’t

worry about decomposing the URLs to avoid storing the home address of

www.mcobject.com/index.htm and www.mcobject.com/partners.com multiple

times. The database design employed for this paper is not intended to reflect an

optimal design, but to aid in comparing SQL to a navigational API.

The SQL used in this comparison is ANSI SQL and the C API is ODBC.

McObject’s eXtremeDB, a database designed to be used in intelligent, connected

devices and embedded systems, provides the navigational API.

For the test database, the SQL database definition language (DDL) is:

create table url

(

 path char(31) primary key

);

create table visitor

(

 vname char(31) primary key

);

create table visit

(

 path char(31) references url,

 vname char(31) references visitor,

 when_visited timestamp

);

create index vvisitor on visit(vname);

create index vindex on visit(path, when_visited);

http://www.mcobject.com/index.htm
http://www.mcobject.com/partners.com

The corresponding eXtremeDB DDL is:

declare database urlmon[20000];

class URL

{

char<32> path;

 unique tree <path> by_path;

};

class visitor

{

char<32> vname;

 unique tree <vname> by_vname;

};

class visit

{

char<32> path;

char<32> vname;

 unsigned<4> when_visited;

tree <path, when_visited> to_path;

tree <vname> to_visitor;

};

In both schemas, the visit record supports the many-to-many relationship between

URL and VISITOR records. eXtremeDB could have used OID (object identifier)

and ref (references) to implement the relationship, but to keep the examples as

similar as possible, we have employed the relational approach of primary and

foreign keys.

The visit class and table have redundant copies of path, which is the foreign key

of url.path. It is indexed with when_visited to support queries like “show me who

accessed this URL in the last hour”. Because path is the first component of the

index, any DBMS should be able to use it to optimize the join “url.path =

visit.path”.

The following SQL/ODBC code fragment demonstrates an implementation of the

first requirement, to report all URLs in the database.

int ReportURLs()

{

 HSTMT StmtHdl;

 char *selecturl = "select path from url";

 char path[32];

 SDWORD path_ind;

 int stat;

 if ((stat = SQLAllocStmt(ch, &StmtHdl)) != SQL_SUCCESS)

 return stat;

 stat = SQLPrepare(StmtHdl, (UCHAR*) selecturl, SQL_NTS);

 if (stat != SQL_SUCCESS) {

 OnError(eh, ch, StmtHdl);

 SQLFreeStmt(StmtHdl, SQL_DROP);

 return stat;

 }

 stat = SQLBindCol(StmtHdl, 1, SQL_C_CHAR, path,

 sizeof(path), &path_ind);

 if (stat != SQL_SUCCESS) {

 OnError(eh, ch, StmtHdl);

 return stat;

 }

 if ((stat = SQLExecute(StmtHdl)) != SQL_SUCCESS) {

 OnError(eh, ch, StmtHdl);

 return stat;

 }

 puts("\n");

 for (; ;) {

 if ((stat = SQLFetch(StmtHdl)) != SQL_SUCCESS)

 break;

 printf("%s\n", path);

 }

 if (stat != SQL_NOTFOUND)

 OnError(eh, ch, StmtHdl);

 if((stat=SQLFreeStmt(StmtHdl, SQL_DROP)) != SQL_SUCCESS)

 {

 OnError(eh, ch, StmtHdl);

 return stat;

 }

 return SQL_SUCCESS;

}

The code allocates an ODBC statement handle and causes the SQL database to

parse the SQL SELECT statement, prepare an execution plan, and actually

execute the statement. Within a loop, each of the result set rows are fetched and

the URL path is printed.

The equivalent eXtremeDB implementation is shown next.

int ReportURLs()

{

 MCO_RET rc = 0;

 mco_cursor_t UrlCsr;

 mco_trans_h trn;

 URL UrlHandle;

 char path[32];

 mco_trans_start(db, MCO_READ_ONLY,

 MCO_TRANS_FOREGROUND, &trn);

 /* initialize cursor */

 rc = URL_by_path_index_cursor(trn, &UrlCsr);

 if (rc != MCO_S_OK) {

 mco_trans_commit(trn);

 return rc;

 }

 puts("\n");

 for(rc = mco_cursor_first(trn, &UrlCsr);

 rc == MCO_S_OK;

 rc = mco_cursor_next(trn, &UrlCsr))

 {

 rc = URL_from_cursor(trn, &UrlCsr, &UrlHandle);

 rc |= URL_path_get(&UrlHandle, path, sizeof(path));

 printf("%s\n", path);

 }

 mco_trans_commit(trn);

 return MCO_S_OK;

}

The eXtremeDB code begins a transaction (all database access, read or write,

occurs within the scope of a transaction in eXtremeDB) and instantiates a cursor

that will be used to iterate over the URL objects in the database. This is done by

setting up a loop with mco_cursor_first to initialize the loop and mco_cursor_next

in the loop increment. Each iteration of the loop obtains a handle to the current

URL object, and retrieves and prints the path. When mco_cursor_next tries to

read beyond the last URL object, it returns MCO_S_CURSOR_END, causing the

loop to terminate. The transaction is then closed.

The amount of programming required to achieve these results with either API is

roughly comparable, though the eXtremeDB implementation requires slightly less

coding (there is no need to bind host variables) and will execute faster because

there are no parse or execute stages. However, the SQL steps of allocating a

statement handle and preparing and executing the query, and the eXtremeDB

steps of starting a transaction and instantiating a cursor, are roughly comparable.

The key difference between the implementations is one of transparency, or the

connection between the original requirement, and the implementation code. In

the SQL example, except for the SQL select statement, it is impossible to see

programmatically what the application is doing, other than processing some select

statement. The eXtremeDB implementation, on the other hand, is quite clear. A

cursor for the by_path index of the URL class is instantiated and used to iterate

over the URL objects in the database. For each URL, a class handle is initialized

from the cursor and used to retrieve the URL’s path. There is no disconnect

between the application code and the operations being carried out.

In a more complex example, the various SQL-ODBC API function calls will be

far removed from the associated text of the SQL statement, making it more

difficult for a programmer who is not intimately familiar with the code to relate

the program code to the functional requirements. This increases the risk of

introducing defects and increases the cost of maintaining the application during its

life cycle.

The next example demonstrates a more complex requirement that requires

joining, or navigating, all three class/table types to list all users and, for each user,

every URL visited.

The SQL implementation is shown first:

int ReportURLbyUser()

{

 HSTMT StmtHdl;

 char path[32],

 vname[32];

 SDWORD path_ind,

 vname_ind;

 int stat;

 char *select = "\

select path, vname \

from url, visitor, visit \

where url.path = visit.path \

and visitor.vname = visit.vname \

order by vname";

 if ((stat = SQLAllocStmt(ch, &StmtHdl)) != SQL_SUCCESS)

 return stat;

 stat = SQLPrepare(StmtHdl, (UCHAR*) select, SQL_NTS);

 if (stat != SQL_SUCCESS) {

 OnError(eh, ch, StmtHdl);

 SQLFreeStmt(StmtHdl, SQL_DROP);

 return stat;

 }

 stat = SQLBindCol(StmtHdl, 1, SQL_C_CHAR, path,

 sizeof(path), &path_ind);

 if (stat != SQL_SUCCESS) {

 OnError(eh, ch, StmtHdl);

 return stat;

 }

 stat = SQLBindCol(StmtHdl, 2, SQL_C_CHAR, vname,

 sizeof(vname), &vname_ind);

 if (stat != SQL_SUCCESS) {

 OnError(eh, ch, StmtHdl);

 return stat;

 }

 if ((stat = SQLExecute(StmtHdl)) != SQL_SUCCESS) {

 OnError(eh, ch, StmtHdl);

 return stat;

 }

 puts("\n");

 for (; ;) {

 if ((stat = SQLFetch(StmtHdl)) != SQL_SUCCESS)

 break;

 printf("%s\t%s\n", vname, path);

 }

 if (stat != SQL_NOTFOUND) {

 OnError(eh, ch, StmtHdl);

 }

 if ((stat = SQLFreeStmt(StmtHdl, SQL_DROP)) !=

 SQL_SUCCESS) {

 OnError(eh, ch, StmtHdl);

 return stat;

 }

 return SQL_SUCCESS;

}

Despite the requirement to join three tables, the code is not substantially different

from the previous code fragment. The addition of a second selected column

requires one more call to SQLBindCol.

The equivalent eXtremeDB implementation is shown next:

int ReportURLbyUser()

{

 MCO_RET rc = 0;

 mco_cursor_t UrlCsr, VisitorCsr, VisitCsr;

 mco_trans_h trn;

 URL UrlHandle;

 visit VisitHandle;

 visitor VisitorHandle;

 char path[32],

 vname[32];

 int eq;

 mco_trans_start(db, MCO_READ_ONLY,

 MCO_TRANS_FOREGROUND, &trn);

 /* initialize cursor */

 rc = visitor_by_vname_index_cursor(trn, &VisitorCsr);

 rc |= visit_to_visitor_index_cursor(trn, &VisitCsr);

 rc |= URL_by_path_index_cursor(trn, &UrlCsr);

 if (rc != MCO_S_OK)

 {

 mco_trans_commit(trn);

 return rc;

 }

 puts("\n");

 for(rc = mco_cursor_first(trn, &VisitorCsr);

 rc == MCO_S_OK;

 rc = mco_cursor_next(trn, &VisitorCsr))

 {

 rc = visitor_from_cursor(trn, &VisitorCsr,

 &VisitorHandle);

 rc |= visitor_vname_get(&VisitorHandle, vname,

 sizeof(vname));

 for(rc = visit_to_visitor_search(trn, &VisitCsr,

 MCO_EQ, vname, sizeof(vname));

 rc == MCO_S_OK;

 rc = mco_cursor_next(trn, &VisitCsr))

 {

 // use _compare method to ensure we haven't

 // advanced to the next visit_vname

 rc = visit_to_visitor_compare(trn, &VisitCsr,

 vname, sizeof(vname), &eq))

 if(rc || eq)

 break;

 rc = visit_from_cursor(trn, &VisitCsr,

 &VisitHandle);

 rc |= visit_path_get(&VisitHandle, path,

 sizeof(path));

 rc |= URL_by_path_find(trn, path, sizeof(path),

 &UrlHandle);

 rc |= URL_path_get(&UrlHandle, path,

 sizeof(path));

 printf("%s\t%s\n", vname, path);

 }

 }

 mco_trans_commit(trn);

 return MCO_S_OK;

}

Again, the amount of coding is comparable between the two implementations.

The steps using eXtremeDB’s navigational API are a little different, requiring a

loop within a loop to achieve the same result as the SQL join. In this case, the

outer loop iterates over the visitor objects in alphabetical order of vname. For

each of the visitor objects, the second loop iterates over the visit objects by using

the visitor.vname as the search value for the visit_to_visitor_search method.

For each iteration of the inner loop, visit_to_visitor_compare is called to

determine if the current visit object’s vname field is equal to the search value.

This is to test whether mco_cursor_next has stepped beyond the set of relevant

objects, and is equivalent to determining the SQL ‘set’ for the visitor->visit join.

If the comparison passes, a visit handle is initialized from the cursor, the visit.path

field is retrieved, and it is used as the search value to find the associated URL

object. This is the equivalent of the visit<-path join.

The application code in which the navigational API implements the equivalent of

a SQL three table join is neither more complex nor more voluminous. In fact, the

use of an API whose naming scheme is driven by database design creates self-

documenting code, making it easy to follow the processing logic. In contrast, the

SQL-ODBC API functions (SQLPrepare, SQLBindCol, SQLExecute, SQLFetch)

have no direct association to the contextual database and do not contribute to the

readability and maintainability of the code.

The final example demonstrates how to implement aggregation with SQL and

with the eXtremeDB navigational API. For each URL stored in the database, the

application reports the number of times the URL has been visited by all users.

The SQL implementation is shown first:

int ReportURLOverTime

{

 HSTMT StmtHdl;

 char path[32];

 SDWORD count,

 path_ind,

 count_ind;

 int stat;

 char *select = "\

select path, count(*) \

from url, visit \

where url.path = visit.path \

group by path";

 if ((stat = SQLAllocStmt(ch, &StmtHdl)) != SQL_SUCCESS)

 return stat;

 stat = SQLPrepare(StmtHdl, (UCHAR*) select, SQL_NTS);

 if (stat != SQL_SUCCESS) {

 OnError(eh, ch, StmtHdl);

 SQLFreeStmt(StmtHdl, SQL_DROP);

 return stat;

 }

 stat = SQLBindCol(StmtHdl, 1, SQL_C_CHAR, path,

 sizeof(path), &path_ind);

 if (stat != SQL_SUCCESS) {

 OnError(eh, ch, StmtHdl);

 return stat;

 }

 stat = SQLBindCol(StmtHdl, 2, SQL_C_LONG, &count,

 sizeof(count), &count_ind);

 if (stat != SQL_SUCCESS) {

 OnError(eh, ch, StmtHdl);

 return stat;

 }

 if ((stat = SQLExecute(StmtHdl)) != SQL_SUCCESS) {

 OnError(eh, ch, StmtHdl);

 return stat;

 }

 puts("\n");

 for (; ;) {

 if ((stat = SQLFetch(StmtHdl)) != SQL_SUCCESS)

 break;

 printf("%s\t%d\n", path, count);

 }

 if (stat != SQL_NOTFOUND) {

 OnError(eh, ch, StmtHdl);

 }

 if ((stat = SQLFreeStmt(StmtHdl, SQL_DROP)) !=

 SQL_SUCCESS) {

 OnError(eh, ch, StmtHdl);

 return stat;

 }

 return SQL_SUCCESS;

}

The SQL code joins the URL and VISIT tables, counting the number of VISIT

rows joined with each URL row. Other than the SQL SELECT statement, the

implementation is not so different than the previous two SQL implementations.

The eXtremeDB navigational implementation follows:

int ReportURLOverTime()

{

 MCO_RET rc = 0;

 mco_cursor_t UrlCsr, VisitCsr;

 mco_trans_h trn;

 URL UrlHandle;

 visit VisitHandle;

 char path[32], vpath[32];

 int count;

 mco_trans_start(db, MCO_READ_ONLY,

 MCO_TRANS_FOREGROUND, &trn);

 /* initialize cursor */

 rc = URL_by_path_index_cursor(trn, &UrlCsr);

 rc |= visit_to_path_index_cursor(trn, &VisitCsr);

 if (rc != MCO_S_OK)

 {

 mco_trans_commit(trn);

 return rc;

 }

 puts("\n");

 for(rc = mco_cursor_first(trn, &UrlCsr);

 rc == MCO_S_OK;

 rc = mco_cursor_next(trn, &UrlCsr))

 {

 rc = URL_from_cursor(trn, &UrlCsr, &UrlHandle);

 rc |= URL_path_get(&UrlHandle, path, sizeof(path));

 printf("%s\n", path);

 for(count = 0,

 rc = visit_to_path_search(trn, &VisitCsr,

 MCO_EQ, path, sizeof(path), 0);

 rc == MCO_S_OK;

 rc = mco_cursor_next(trn,&VisitCsr),count++)

 {

 // ensure we haven't advanced to the next

 // visit_vname

 rc = visit_from_cursor(trn, &VisitCsr,

 &VisitHandle);

 rc |= visit_path_get(&VisitHandle, vpath,

 sizeof(vpath));

 if(rc || strcmp(path, vpath))

 break;

 }

 printf("%s\t%d\n", path, count);

 }

 mco_trans_commit(trn);

 return MCO_S_OK;

}

This eXtremeDB implementation resembles the earlier navigational example,

consisting of a loop within a loop to affect the ‘join’ of path->visit in order to

count the number of visit objects for each path. This is how eXtremeDB

navigates one-to-many relationships. In this case, because visit.to_path is a

compound index, we cannot use the _compare method because no comparison

value for when_visited is provided. So, we simply retrieve the visit.vpath field

and use strcmp to test for the end of the visit objects for a path.

Programming ease

Which API results in simpler programming? The eXtremeDB navigational

implementations above require about as much labor, measured in lines of code, as

the SQL equivalent. Given an understanding of either API, neither is more

complex. However, a SELECT with a large number columns will require one

SQLBindCol function per column, and a parameterized statement will require a

call to SQLBindParameter for each argument to the statement. A SELECT to

fetch ten columns with three parameterized filters will require thirteen such

function calls which, while not complex, do add to the volume of application

code. Crafting correct SQL statements for complex operations, such as a

correlated sub-query, requires a depth of understanding of SQL that most non-

specialists (such as embedded systems developers) lack, and therefore adds to the

learning curve and detracts from the maintainability of the application.

Maintainability

Because the database objects being acted upon are used in the API, the

eXtremeDB navigational API implementation yields application code that is self-

documenting. Given an understanding of the underlying data model, a developer

who is unfamiliar with the implementation will be able to read it, understand it,

and maintain it.

With SQL, the body of application code is often quite distant from the text of the

SQL statement(s). This lack of integration adds difficulty by requiring the

maintenance programmer to conceptualize two distinct logical systems, while

predicting the interaction between the two. This “mental juggling” is essential to

insure that a change to one system does not impair the other.

For example, tinkering with the SQL statement to address new application

requirements can impair performance if it causes the optimizer to choose an

inferior execution plan. This, in turn, necessitates a database re-design, such as

adding or dropping indexes. These iterations of application code changes and

database changes add to the maintenance cost. With a navigational API, however,

the programmer by definition writes the execution path and knows whether the

database design supports the requirement, and will modify the schema at the same

time, if necessary.

Determinism

In the examples above, the navigational approach is deterministic in the sense that

when the application is compiled, it is known exactly how the data will be

traversed. In contrast, the SQL optimizer has a number of choices to consider and

the data navigation is not determined until run-time. For the three-table join

shown above, the SQL optimizer will choose from six possible join combinations.

A four-table join presents 24 possible join combinations. Many factors, such as

the presence of indexes, the distribution of values within indexes, and the number

of rows in the tables, determine the choice of execution plans. Depending on the

optimizer, the execution plan can change from execution to execution as the

metrics driving this determination change.

This means performance may slip as distribution of data in the database changes.

SQL databases have various techniques to cope with this. An ‘update statistics’

operation is a common one, but can be time consuming and in some database

systems it must be explicitly invoked, which puts a maintenance burden on the

end-user.

Learning Curve

As suggested above, developers often fall into a trap from not understanding their

database vendor’s SQL optimizer. Unfortunately, the consequences are often not

felt until the end of a project when, to everyone’s dismay, performance is

abominable when tested with real-life data.

Failing to understand the optimizer and the reason for its execution plan can mean

re-writing significant portions of the application’s SQL. For example, to get

around optimizer limitations, the developer may have to break down complex

queries into simpler ones.

This “hidden” learning curve—consisting of the time required to fully

comprehend the behavior of any SQL optimizer—is not trivial. Important

questions to ask about the optimizer include:

Does the database use a rules-based or cost-based optimizer? Rules-based

optimizers determine execution plans based upon pre-determined rules and

without consideration for the actual contents of the database. Cost-based

optimizers are more complex and consider the cardinality of indexes, the number

of rows in a table and other factors to attempt to calculate the I/O cost of potential

execution plans.

One problem with cost-based optimizers is that the number of possible join

combinations increases by N-factorial for N tables joined in the query, and each

index on each table creates a possible navigation path that the optimizer must

evaluate. An optimizer can easily spend more time analyzing all the plans than it

would take to execute one of the early plans considered (even if it was not,

ultimately, the most efficient). Cost-based optimizers should include a way to

halt evaluation of execution plans and simply go with the best one found so far.

Can the optimizer perform an index intersection? If not, the developer can

wind up, at the end of a project, rewriting what was thought to be one or more

simple queries. For example, a query with a filter on two columns (“columnA =

3290 and columnB like ‘u%’ order by columnB, columnC”) would need to be

separated into two queries, one for each of the conditions. The application would

then find the intersection of the two result sets, and sort the results via a quick sort

or other algorithm in order to gain acceptable performance. The database should

do this by itself, but many cannot perform an index intersection, requiring this

workaround.

Does the database support clustered indexes? Clustered indexes represent the

best approach to sorting. Non-clustered indexes should be used for filtering. The

reason for this is that a clustered index physically orders data rows according to

the index. Hence, retrieving a row set in the order of the clustered index requires

only scanning the data table (possibly from some starting point determined by a

filter), minimizing disk I/O and leading to superior performance.

In contrast, consider the overhead entailed in sorting with a non-clustered index:

with a one megabyte table and 100K of cache, there is enough cache for 10% of

the table. The index returns the indexed columns, sorted in the desired order, but

they point to random pages in the data file where the rest of the table columns are

found. This results in a less than one-in-ten chance of a data page referenced by

the index being in cache (less than 1/10, since the index pages also take up cache

space). This causes a tremendous amount of I/O to return the row set in sorted

order by using the non-clustered index.

I/O is tremendously expensive in terms of performance and should clearly be

avoided. Therefore the optimizer should do a table scan (or use a filter if one is

available) and sort the results in memory. Even if the row set is large and the sort

algorithm needs to swap to disk occasionally, this results in less I/O than

thrashing the index and data pages through the cache.

(Note that the discussion above doesn’t apply to main-memory databases, which

eliminate I/O.)

Does the database support covered queries? The scenario above can be

avoided if the columns selected are also the ones to be sorted, a secondary index

exists for the columns, and the optimizer has the ability to perform a covered

query. A covered query is one that does not need to access the table pages

because all necessary data exists in the index pages.

Conclusion

Clearly, when efficiency is important, knowing standard SQL is a small part of

the learning curve in working with a specific SQL database. The developer must

also learn the capabilities of the DBMS optimizer and know it will support the

desired level of performance. Similarly, future developers performing

maintenance or enhancement will need to understand this optimizer, as well as

master the application/database interaction that is somewhat masked by the SQL-

ODBC API. These requirements often outweigh SQL’s presumed ease-of-use,

tipping the embedded systems database choice toward the more transparent, self-

documenting and deterministic navigational API.

In addition, performance considerations can be magnified by embedded system

CPUs that, for economic reasons, are often a fraction of the clock speed of

contemporary workstation and server CPUs. Query optimization is a heavily

CPU-intensive task. Choosing the navigational API eliminates this source of

overhead, supporting real-time performance in network infrastructure,

telecommunication switches and other real-time devices.

