
®

MISRA C++
User Experience of Tools for Safety-Critical Systems

5th June 2008

MISRA C++MISRA C++
User Experience of Tools for SafetyUser Experience of Tools for Safety--Critical SystemsCritical Systems

55thth June 2008June 2008

Chris Tapp
Chairman, MISRA C++ Working Group

chairman@misra-cpp.org

IntroductionIntroductionIntroduction

• The need for MISRA C++
• Development
• Sample Rules
• goto
• Conclusions
• Future Work
• Questions

The need for MISRA C++The need for MISRA C++The need for MISRA C++

• MoD use for Safety Related / Critical Systems
• Used for ground-based safety related applications

with very little control on use (no subset)
• JSF use for safety related avionics (using JSF++)
• The Avionics Systems Standardisation Committee

(ASSC) was approached to provide the focus for
an avionics industry led standard

The need for MISRA C++The need for MISRA C++The need for MISRA C++
• Existing use in other safety related systems

• Jet engine controllers
• Medical systems
• Nuclear

• An automotive requirement meant MISRA
became interested in C++
• MISRA C++ Working Group formed
• In order to avoid competing standards, the

fledgling ASSC led team was absorbed into a
MISRA C++ working group

Development – ObjectivesDevelopment Development –– ObjectivesObjectives
• Produce a C++ subset suitable for use in critical

systems
• Produce a subset of C++ using techniques similar to

those within MISRA C
• Gather existing C++ guidelines from many diverse

sources into a single repository
• Add new guidance so as to significantly enhance the

state-of-the-art
• Establish a single, generic set of guidelines for the

use of C++ in critical systems
• Produce guidelines that are understandable to the

majority of programmers

Development – LanguageDevelopment Development –– LanguageLanguage

• C++, like all other languages, has issues which may
lead to insecurities
• Unspecified behaviour
• Undefined behaviour
• Implementation-defined behaviour
• Behaviour that requires no diagnostic

• C lists these issues in Annex G (or J for C99)
• This is not the case for C++, and they had to be

teased-out of ISO/IEC 14882:2003
• Luckily, QinetiQ (a member of the Working Group) had

already enumerated these for a previous project

Development – Rule FormationDevelopment Development –– Rule FormationRule Formation

• Given the similarities with ‘C’, many issues were already
covered by MISRA C rules (sometimes with changes)

• Existing sources used as the basis for many other rules
• Scott Meyers
• Stephen Dewhurst
• Other coding standards, including HICPP, JSF++

• Several areas of the language were targeted for major work
• Templates
• Inheritance
• Exceptions
• Unnecessary constructs

Development – Rule StructureDevelopment Development –– Rule StructureRule Structure

• Rule Number (xx.yy.zz)
• xx.yy gives the related section in the standard

• Rule Category
• Required
• Advisory
• Document

• Headline text – the rule itself
• Issue Reference – location within the standard for any language

issue(s) covered by the rule
• Rationale – justification and/or explanation of rule
• Exception – any exceptions to the rule?
• Examples

Sample Rule # 1Sample Rule # 1Sample Rule # 1
Rule 0-1-7 (Required) The value returned by a function having a non-void return

type that is not an overloaded operator shall always be used.

Rationale
In C++ it is possible to call a function without using the return value, which may be an error.
The return value of a function shall always be used.

Overloaded operators are excluded, as they should behave in the same way as built-in operators.

Exception
The return value of a function may be discarded by use of a (void) cast.

Example
uint16_t func (uint16_t para1)
{
 return para1;
}

void discarded (uint16_t para2)
{
 func (para2); // value discarded – Non-compliant
 (void)func (para2); // Compliant
}

See also
Rule 5-2-4

Sample Rule # 2Sample Rule # 2Sample Rule # 2
Rule 15-4-1 (Required) If a function is declared with an exception-specification, then

all declarations of the same function (in other translation
units) shall be declared with the same set of type-ids.

[NDR 15.4(2)]

Rationale
 It is undefined behaviour if a function has different exception-specifications in different
translation units.

Example
// Translation unit A
void foo() throw (const char_t *)
{
 throw "Hello World!";
}

// Translation unit B
// foo declared in this translation unit with a different exception
// specification
extern void foo () throw (int32_t); // Non-compliant
 // – different specifier

void b () throw (int32_t)
{
 foo (); // The behaviour here is undefined.
}

gotogotogoto

• Appropriate use can make code easier to understand
and may improve safety

• Inappropriate use can lead to “spaghetti-code”
• MISRA C++ permits restricted use of “goto”

• No jumps in to nested scopes
• No “back” jumps

• Note – just because MISRA C++ permits this
restricted used, it is perfectly acceptable for local
policy to say otherwise!

Future WorkFuture WorkFuture Work

• Proposed future work items include
• Exemplar suite – note not a compliance suite
• Increase coverage

• Identified issues
• Library, possibly as a separate document

• Update when the next version of ISO/IEC 14882 is
released (and in use)

• BOOST?

ConclusionsConclusionsConclusions

• The MISRA C++ subset is now available
• Existing sources have been pulled into a single

document
• New guidance has added significantly to enhance

the state-of-the-art
• Wide adoption and establishment as best-

practice will mean
• Skills will be readily available
• General C++ programming competence will be

improved

®

MISRA C++MISRA C++MISRA C++

Any questions?

	MISRA C++User Experience of Tools for Safety-Critical Systems5th June 2008
	Introduction
	The need for MISRA C++
	The need for MISRA C++
	Development – Objectives
	Development – Language
	Development – Rule Formation
	Development – Rule Structure
	Sample Rule # 1
	Sample Rule # 2
	goto
	Future Work
	Conclusions
	MISRA C++

